H. Qin (qinhz@hotmail.com), Institute of Mathematics, Shandong University of Technology, Zibo, Shandong, Peoples Rep of China, and Y Lu* (ylu@bloomu.edu), Department of Mathematics and Computer Scienc, Bloomsburg University, Bloomsburg, PA 17821. On the representation problems of infinite series with Harmonic numbers.
For integers $p$ and $q$, we obtain the representaions of the following extended Euler sums

$$
\sum_{n=1}^{\infty} \frac{1}{n^{q}} \sum_{r=1}^{k n} \frac{1}{r^{p}}, \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{q}} \sum_{r=1}^{k n} \frac{1}{r^{p}}, \sum_{n=1}^{\infty} \frac{1}{n^{q}} \sum_{r=1}^{k n} \frac{(-1)^{r-1}}{r^{p}}, \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{q}} \sum_{r=1}^{k n} \frac{(-1)^{r-1}}{r^{p}}
$$

in terms of the Riemann zeta function and the Hurwitz function when $p+q$ is odd. If $p+q$ is even, these sums are also expressed in terms of the Riemann zeta function. (Received February 11, 2011)

