Kenneth B Ascher* (kennyascher@gmail.com), SUNY Stony Brook, Department of Mathematics, 100 Nicolls Road, Stony Brook, NY 11794. Random Trinomials \& Lower Binomials. There is no general formula, using rational functions and radicals, to determine real roots of polynomials of degree 5 or more. We show how to compute the number of real, non-zero roots of trinomials (of arbitrary degree) using a simple logarithmic inequality. Using the log-uniform distribution for the coefficients, we prove that the number of real roots is $\frac{3}{2}$ on average. We then present generalizations of this result to polynomials with an arbitrary number of terms (t-nomial). Finally, we show how an "Archimedian" Newton Polygon gives an algorithm to efficiently approximate the roots of f. This work was conducted under Profesor J. Maurice Rojas as part of the 2010 Math REU at Texas A\&M University. (Received January 20, 2011)

