Tiancheng Ouyang and Zhifu Xie* (zxie@vsu.edu), Department of Mathematics \& Computer Science, P.O.Box 9068, Virginia State University, Petersburg, VA 23806. Number of Collinear Central Configurations.
The motion of celestial body is described by a system of second order differential equations and it is called n-body problem. A central configuration plays the essential role in understanding the global structure of solutions of the n-body problem. A central configuration is an arrangement of the initial positions of masses that leads to special families of solutions of the n-body problem. There are different understandings of equivalence of central configurations in collinear n-body problem and we call them permutation equivalence and geometric equivalence when we count the number of central configurations. In the permutation equivalence, Euler found three collinear central configurations and Moulton generalized to $n!/ 2$ central configurations for any given mass m in the collinear n-body problem under permutation equivalence. In particular, the number of central configurations becomes from 12 under permutation equivalence to 1 under geometric equivalence for four equal masses. The main result in this paper is the discovery of the explicit parametric expressions of the union H_{4} of the singular surfaces in the mass space (four distinct positive masses) which decrease the number of collinear central configurations under geometric equivalence. (Received February 01, 2011)

