1070-46-93 Rongwei Yang* (ryang@math.albany.edu), 10 Harmony Court, Cohoes, NY 12047. Banach algebra and Hyperplane Arrangements.

A complex Banach algebra \mathcal{B} is a complete normed algebra over the complex field \mathbb{C} . For a tuple $A = (A_1, A_2, ..., A_n)$ of elements in \mathcal{B} , properties of the linear sum $A(z) = z_1A_1 + z_2A_2 + ... + z_nA_n$ (called multiparameter pencil of A) is of interest in many areas of science. We define the projective spectrum P(A) to be the collection of $z \in \mathbb{C}^n$ such that A(z)is not invertible in \mathcal{B} . P(A), as oppose to some classical notions of joint spectrum for tuples, enjoys some nice geometric and topological properties. An interesting example is the case when A is a commuting tuple, in which P(A) turns out to be a union of hyperplanes. This talk examines this connection. We will see why infinite union of hyperplanes arises naturally, and we will also give another point of view on the Orlick-Solomon ideal. (Received February 01, 2011)