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BOUNDS FOR MULTIPLICATIVE COSETS OVER FIELDS OF

PRIME ORDER

COREY POWELL

Abstract. Let m be a positive integer and suppose that p is an odd prime
with p ≡ 1 mod m. Suppose that a ∈ (Z/pZ)∗ and consider the polynomial
xm − a. If this polynomial has any roots in (Z/pZ)∗, where the coset repre-
sentatives for Z/pZ are taken to be all integers u with |u| < p/2, then these
roots will form a coset of the multiplicative subgroup µm of (Z/pZ)∗ consist-
ing of the mth roots of unity mod p. Let C be a coset of µm in (Z/pZ)∗,
and define |C| = maxu∈C |u|. In the paper “Numbers Having m Small mth
Roots mod p” (Mathematics of Computation, Vol. 61, No. 203 (1993),pp.
393-413), Robinson gives upper bounds for M1(m, p) = minC∈(Z/pZ)∗/µm |C|
of the form M1(m, p) < Kmp1−1/φ(m), where φ is the Euler phi-function. This
paper gives lower bounds that are of the same form, and seeks to sharpen the
constants in the upper bounds of Robinson. The upper bounds of Robinson
are proven to be optimal when m is a power of 2 or when m = 6.

1. Introduction

Let Z, Q, R, and C denote the integers, rationals, real numbers, and complex
numbers, respectively. Suppose that m > 1 is a positive integer and that p is an
odd prime with p ≡ 1 mod m. Take the coset representatives for Z/pZ to be all
integers u with |u| < p/2. The multiplicative group (Z/pZ)∗ has a subgroup µm of
mth roots of unity mod p, which is generated by a single element t.

If a ∈ (Z/pZ)∗ has any mth roots mod p, then these roots will form a coset
of µm in (Z/pZ)∗. Let C be a coset of µm. Define |C| = maxu∈C |u| and let

‖C‖ =
√∑

uεC u
2. These two measures of the “size” of C are related by the

inequality ‖C‖/
√
m ≤ |C| ≤ ‖C‖. Define M1(m, p) = minC∈(Z/pZ)∗/µm |C| and let

M2(m, p) = minC∈(Z/pZ)∗/µm ‖C‖.
Let Km be the infimum of all K’s such that M1(m, p) ≤ Kp1−1/φ(m) for all

p ≡ 1 mod m, where φ is the Euler phi-function. In [6], Robinson proves that such
a Km exists, and gives the following upper bounds for Km:

1. Km ≤ 2τ , where τ is the number of distinct odd primes dividing m.
2. Km ≤ 3 if m is divisible by only one prime greater than 3.
3. Km ≤ 2/

√
3 if m is divisible by no prime greater than 3.

Robinson conjectures that there are lower bounds forM1(m, p) of the formM1(m, p)
≥ Kp1−1/φ(m), but does not prove this result, and does not establish whether or
not the upper bounds he gives for Km can be improved in general. In [3], Konyagin
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and Shparlinksi prove the lower bound M1(m, p) > (p− 1)/2− p3/2/m, which is a
good bound if p is small compared to m. Section 2 establishes that

M1(m, p) ≥ (
√
φ(m)(

∏
q prime
q|m

q1/(q−1))/m)p1−1/φ(m)

if p is sufficiently large compared to m. It follows from the bound above that

M1(m, p) ≥ (m1/(m−1)−1
√
φ(m))p1−1/φ(m),

since f(x) = x1/(x−1) is a decreasing function of x for x > 1. Section 2 proves that:

1. Km ≤
∏
q odd prime

q|m
q

1
2q−2 , and

2. Km ≤ 2/
√

3 if m is divisible by no prime greater than 3.

These upper bounds are at least as sharp as Robinson’s for all m and p. The
first upper bound gives the estimates Km < Cεm

ε for any ε > 0, where Cε =∏
q odd prime
1/(2q−2)>ε

q1/(2q−2)−ε. Hendrik Lenstra has suggested that Km < C
√

lnm for some

constant C, but this bound seems difficult to prove.
Section 9 discusses the possibility of improving these upper and lower bounds.

2. Lower bounds for M1(m, p) and M2(m, p)

Let ζm be a primitive mth root of unity. It is well known from Galois theory
that Q(ζm) is a Galois extension of Q of degree φ(m), and that the elements σj
of the Galois group Gal(Q(ζm)/Q) of Q(ζm) over Q are uniquely defined by the
condition σj(ζm) = ζjm, where gcd(j,m) = 1. Let NQ(ζm)/Q( ) and TrQ(ζm)/Q( )
denote the norm and trace maps from Q(ζm) to Q. It is well known from algebraic
number theory that the irreducible polynomial of ζm over Q is the mth cyclotomic
polynomial Φm(X) =

∏
i∈(Z/mZ)∗ (X − ζim), and that the ring of integers of Q(ζm)

is Z[ζm]. The ideal generated by p in Z[ζm] factors as pZ[ζm] =
∏
i∈(Z/mZ)∗ Pi,

where
Pi = pZ[ζm] + (ζm − ti)Z[ζm].

The following theorem will also use the facts that NQ(ζm)/Q(Pi) = p and that
Pi ∩ Z = pZ.

Let l be the largest prime dividing m such that M1(m, p) < p/l, if such a prime
exists, and let l = 1 otherwise. If p > (2τ maxq|m,q prime q)

φ(m), then M1(m, p) <

2τp1−1/φ(m) < p/maxq|m,q prime q by the results of Robinson, and so l will be the
largest prime dividing m.

Theorem 1. If l is as above, then

M1(m, p) ≥ (
√
φ(m)(

∏
q prime,q≤l

q|m

q
1
q−1 )/m)p1−1/φ(m).

The proof of the theorem will follow directly from the following three lemmas
together with the fact that |NQ(ζm)/Qα| = NQ(ζm)/Q(αZ[ζm]) for any α ∈ Z[ζm].
Let C be a coset of (Z/pZ)∗, and let b0, . . . , bm−1 be the elements of C with

bj ≡ b0tj mod p. Define βd =
∑m−1
j=0 bjζ

jd
m , and let β denote the complex conjugate

of β.

Lemma 1.1. If β1 is as above, and C is such that |C| = M1(m, p), then q
φ(m)
q−1 |

NQ(ζm)/Q(β1) for all q ≤ l.
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Proof. It suffices to show that β1 ∈ (ζ
m/q
m − 1)Z[ζm], since

NQ(ζm)/Q(ζm/qm − 1) = NQ(ζq)/Q(NQ(ζm)/Q(ζq)(ζ
m/q
m − 1)) = q

φ(m)
q−1 .

It is clear that ζim ≡ ζ
imod(m/q)
m mod (ζ

m/q
m − 1)Z[ζm], and hence that

β1 ≡
m
q −1∑
j=0

(ζjm

q−1∑
k=0

bj+km/q) mod (ζm/qm − 1)Z[ζm].

It follows from the definition of bi that

q−1∑
k=0

bj+km/q ≡ bj

q−1∑
k=0

tkm/q mod p

≡ bj
1− tm

1− tm/q mod p

≡ 0 mod p

for 0 ≤ j ≤ m
q −1. It now follows that

∑q−1
k=0 bj+km/q = 0 for 0 ≤ j ≤ m

q −1 because

|
q−1∑
k=0

bj+km/q | ≤
q−1∑
k=0

|bj+km/q | < pq/l ≤ p.

This proves the lemma.

Lemma 1.2. If β1 is as above, then β1 6= 0, and

p2(φ(m)−1) | NQ(ζm)/Q(β1β1).

Proof. It follows from the definition of Pj that ζm ≡ tj mod Pj , where gcd(j,m)=1,

and hence β1 ≡ b0
∑m−1
k=0 tk(j+1) mod Pj . This sum is a geometric series, and so

β1 ≡ b0(1 − tm(j+1))(1 − tj+1)−1 ≡ 0 mod Pj provided that j 6= m − 1. It follows

that pφ(m)−1 | NQ(ζm)/Q(β1). If j = m − 1, then β1 ≡ b0m 6≡ 0 mod Pj , which
implies that β1 6∈ Pm−1 and hence that β1 6= 0. The lemma now follows since
NQ(ζm)/Q(β1) = NQ(ζm)/Q(β1).

It is a direct consequence of Lemma 1.1 and Lemma 1.2 that

|NQ(ζm)/Q(β1β1)| ≥ (
∏

q prime,q≤l
q|m

q2φ(m)/p−1)p2(φ(m)−1)

if |C| = M1(m, p). The theorem will now follow from taking the 2φ(m)th root of
this inequality and combining it with the following inequality.

Lemma 1.3. If β1 is as above, then

|C| ≥ (
√
φ(m)/m)|NQ(ζm)/Q(β1β1)|1/(2φ(m)).

Proof. It follows from the arithmetic-geometric mean inequality that

TrQ(ζm)/Q(β1β1)/m2 ≥ (φ(m)/m2)(NQ(ζm)/Q(β1β1))1/φ(m).

The lemma follows by combining this inequality with the following lemma and the
inequality |C|2 ≥ ‖C‖2/m and then taking the square root of both sides.
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Lemma 1.4. If β1 is as above, then

m‖C‖2 ≥ TrQ(ζm)/Q(β1β1),

where equality holds if βd = 0 for all d with gcd(d,m) 6= 1.

Proof. The lemma is a consequence of the following computation.

TrQ(ζm)/Q(β1β1) =
∑

j∈(Z/mZ)∗

(
m−1∑
k=0

bkζ
jk
m )(

m−1∑
k=0

bkζ
jk
m )

≤
∑

jmodm

(
m−1∑
k=0

bkζ
jk
m )(

m−1∑
k=0

bkζ
jk
m )

=
∑

jmodm

m−1∑
k=0

m−1∑
l=0

bkblζ
(k−l)j
m

= m‖C‖2 +
∑

0≤k,l≤m−1
k 6=l

bkbl
∑

jmodm

ζ(k−l)j
m

= m‖C‖2.
Combining the direct consequence of Lemma 1.1 and Lemma 1.2 with the arith-

metic-geometric mean inequality and Lemma 1.4 gives the following lower bound
for M2(m, p).

Theorem 2. If M2(m, p) is as previously defined, then

M2(m, p) ≥ (
√
φ(m)/m

∏
q prime,≤l

q|m

q
1
q−1 )p1−1/φ(m).

If p is sufficiently large compared to m, then

M2(m, p) ≥ (m1/(m−1)
√
φ(m)/m)p1−1/φ(m).

An upper bound for this measure will be given in Section 2.

2. Upper bounds for M1(m, p) and M2(m, p)

The following upper bounds are obtained by using Minkowski’s geometry
of numbers. The first upper bound below also gives the estimate M1(m, p) <
Cεm

εp1−1/φ(m) for any ε > 0, where Cε is as defined in Section 1.

Theorem 3. If m and p are as above, then

M1(m, p) ≤ min(p1−1/m, (
∏

q odd prime
q|m

q1/(2q−2))p1−1/φ(m)).

If 3 is the only odd prime dividing m, then

M1(m, p) ≤ min(p1−1/m, (2/
√

3)p1−1/φ(m)).

If Λ is a lattice of full rank in Rn and B = {vi}ni=1 is an ordered Z-basis for
Λ, then let d(Λ) = | det(A)|, where the ith column of A is vi. This determinant

is independent of the choice of ordered basis for Λ. Note that d(Λ) =
√
| det(M)|,

where Mij = 〈vi, vj〉 and 〈 , 〉 is the standard Euclidean inner product. The
theorem above is a consequence of the following theorem (see [5], p. 120).



BOUNDS FOR MULTIPLICATIVE COSETS OVER FIELDS OF PRIME ORDER 811

Theorem 4. Let Λ be a lattice (of full rank) in Rn and let K be a bounded 0-
symmetric convex body of volume vol(K) > 2nd(Λ). Then K contains a point x 6= 0
of Λ.

Let Ψm(X) be the m− φ(m)th degree polynomial (Xm − 1)/Φm(X) and define

V = {(b0, . . . , bm−1) ∈ Rm|
m−1∑
j=0

bjX
j = Ψm(X)Θ(X),Θ(X) ∈ R[X ]}.

The subspace V is φ(m)-dimensional since V is isomorphic to the subspace of R[X ]
consisting of polynomials r such that Ψm(X) | r and deg(r) < m. This subspace
has a basis β = {Ψm(X), XΨm(X), . . . , Xφ(m)−1Ψm(X)}. The vector space V
contains the lattice

L = {(b0, . . . , bm−1) ∈ Zm|
m−1∑
j=0

bjX
j = Ψm(X)Θ(X),Θ(X) ∈ Z[X ]}.

Define also the lattice

C = {(b0, . . . , bm−1) ∈ Zm| bj ≡ b0tj mod p, 0 ≤ j ≤ m− 1}
in Rm, and let

Sr = {(b0, . . . , bm−1) ∈ Rm| max
0≤j≤m−1

|bj| < r}.

If (b0, . . . , bm−1) ∈ C and b0 6≡ 0 mod p, then there is a coset C such that C =
{bi mod p| 0 ≤ i ≤ m− 1} and so

M1(m, p) ≤ |C| ≤ max
0≤j≤m−1

|bj |.

If r can be chosen so that r < p, then (b0, . . . , bφ(m)−1) ∈ Sr ∩ (C ∩ L) will have
b0 6≡ 0 mod p. The following lemma proves the first part of Theorem 3.

Lemma 4.1. If m and p are as above, then M1(m, p) ≤ p1−1/m.

Proof. Let ei be the ith standard basis element in Rm. The setB={(1, t, . . . , tm−1),
pei| 2 ≤ i ≤ m} forms a Z-basis for C, and hence d(C) = pm−1. It is now clear from
Theorem 4 that Sr will contain a point of C if (2r)m > 2mpm−1, or if r > p1−1/m.
The lemma now follows from the earlier remarks.

Now, suppose that

p1−1/m > (
∏

q odd prime
q|m

q1/(2q−2))p1−1/φ(m).

To apply Theorem 4, define d(L) = d(I(L)), where I is an isometry from V to
Rφ(m). Note that this definition is independent of the choice of I and that d(L) =√
| det(M)|, where Mij = 〈vi, vj〉 and B = {vi}ni=1 is a basis for L as a Z-module.

If the φ(m)-dimensional volume vol(Sr ∩ V ) > 2φ(m)d(C ∩ L), then Theorem 4
would imply that there is a non-zero point of C ∩ L in Sr ∩ V. It would then be a
consequence of these remarks together with the following theorem that there is a
non-zero point of C ∩ L in Sr ∩ V if

1. r > (d(C ∩ L))1/φ(m),
2. r > (d(C ∩ L))1/φ(m)/

√
2 for m even, and

3. r > ((2/
√

3)d(C ∩ L)/d(L))1/φ(m) if 3 is the only odd prime dividing m.
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If r can be chosen such that r < p, then it would follow that M1(m, p) ≤ r. The
following two theorems will prove Theorem 3. Note that M1(m, p) = M1(2m, p) if
m is odd, since the roots of X2m − u mod p are of the form ±x, where x is a root
of Xm − z and z2 ≡ u mod p.

Theorem 5. The following are lower bounds for vol(Sr ∩ V ):

1. vol(Sr ∩ V ) ≥ (2r)φ(m),
2. vol(Sr ∩ V ) ≥ (2

√
2r)φ(m) if m is even,

3. vol(Sr ∩ V ) = (
√

3r)φ(m)d(L) if m = 2e3f , with e, f > 0.

Proof. A result of Vaaler (see [8]) shows that vol(S1/2 ∩ V ) ≥ 1. A change of
variables then establishes the first lower bound. To prove the second lower bound,
define

W = {(b0, . . . .bm−1)|
m−1∑
j=0

bjX
j = (Xm/2 − 1)Θ(X),Θ(X) ∈ R[X ]}.

The fact that m is even implies that Xm/2 − 1 | Ψm(X), and so V ⊂ W . The set

BW = {wi}m/2−1
i=0 is an ordered orthogonal basis for W , where wi has −1 in the

ith coordinate, 1 in the (i +m/2)th coordinate, and 0 in all other coordinates. It
follows that w ∈ Sr ∩W if and only if |ai| < r for 0 ≤ i ≤ m/2 − 1, where ai is
the ith coordinate of w with respect to the basis BW . Map Sr ∩W isometrically to
the box Sr

√
2 in Rm/2 by taking wi to

√
2ei+1. Applying the result of Vaaler and a

change of variables then shows that

vol(Sr ∩ V ) = vol((Sr ∩W ) ∩ V )

= vol(Sr
√

2 ∩ V ′)
= (2

√
2r)φ(m)vol(S1/2 ∩ V ′)

≥ (2
√

2r)φ(m),

where V ′ is the image of V in Rm/2. This establishes the second lower bound.
If m = 2e3f with e, f > 0, then

Xm − 1 = (Xm/2 − 1)(Xm/6 + 1)(Xm/3 −Xm/6 + 1),

with Φm(X) = Xm/3 − Xm/6 + 1, and hence Ψm(X) = (Xm/2 − 1)(Xm/6 + 1).

The set B = {wi + wi+m/6}m/3−1
i=0 is an ordered basis for V , and so B′ =

{
√

2(ei + ei+m/6)}m/3i=1 forms an ordered basis for V ′. If ai denotes the ith coor-
dinate of v′ ∈ V ′ with respect to the basis B′, then the ith coordinate of v′ with
respect to the standard basis is

1.
√

2ai if 1 ≤ i ≤ m/6,
2.
√

2(ai + ai−m/6) if m/6 < i ≤ m/3, and

3.
√

2ai−m/6 if m/3 < i ≤ m/2.
Hence v′ ∈ S1/2 ∩ V ′ if and only if |ai| < 1

2
√

2
for 1 ≤ i ≤ m/3 and |ai + ai+m/6| <

1
2
√

2
for 1 ≤ i ≤ m/6. The computation at the end of the proof of the second lower

bound proved that

vol(Sr ∩ V ) = (2
√

2r)φ(m)vol(S1/2 ∩ V ′).(1)
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Map V ′ to Rm/3 by taking
√

2(ei+ ei+m/6) to ei in Rm/3. The volume of the image

of S1/2 ∩ V ′ in Rm/3 can be found by evaluating the multiple integral∫ 1
2
√

2

−1
2
√

2

· · ·
∫ 1

2
√

2

−1
2
√

2

∫
min( 1

2
√

2
, 1
2
√

2
−x1)

max( −1
2
√

2
, −1
2
√

2
−x1)

· · ·
∫

min( 1
2
√

2
, 1
2
√

2
−xm/6)

max( −1
2
√

2
, −1
2
√

2
−xm/6)

dxm/3 · · ·dx1,

which has the same value as(∫ 1/(2
√

2)

−1/(2
√

2)

∫ min(1/(2
√

2),1/(2
√

2)−x1)

max(−1/(2
√

2),−1/(2
√

2)−x1)

dx2dx1

)m/6
.

A routine computation shows that the value of this double integral is 3/8. It follows
that vol(S1/2 ∩V ′) = (3/8)m/6d(L) since B is a Z-basis for L which maps isometri-
cally to B′. Substituting this value for S1/2 ∩V ′ into (1) proves the third equation,
which finishes the proof of the theorem.

Theorem 6. If C and L are as above, then

d(C ∩ L) = (
∏

q prime
q|m

qφ(m)/(2q−2))pφ(m)−1.

The theorem will be proven by a sequence of lemmas that reduce the theorem to
problems in algebraic number theory. The following lemma reduces finding d(C∩L)
to finding d(L).

Lemma 6.1. If C and L are as above, then d(C ∩ L) = pφ(m)−1d(L).

Proof. It suffices to show that #(L/(C ∩ L)) = pφ(m)−1, since

d(C ∩ L)/d(L) = #(L/(C ∩ L)).

There is a homomorphism Ω from L to Z[ζm] defined by Ω(b0, . . . , bm−1) =∑m−1
j=0 bjζ

j
m, with Ω(L) = Ψm(ζm)Z[ζm]. If Ω(l0, . . . , lm−1) = 0, then

Φm(X)Ψm(X) |
m−1∑
j=0

ljX
j,

and so (l0, . . . , lm−1) = 0 since Φm(X)Ψm(X) = Xm − 1. This shows that Ω is
injective. The set

B = {ζjmΨm(ζm)| 0 ≤ j ≤ φ(m) − 1}
forms a basis for Ψm(ζm)Z[ζm] as a Z-module, and so Ω−1(B) forms a basis for L
as a Z-module. To determine #(L/(C ∩L)), consider the Z/pZ vector spaces L/pL
and (C ∩L)/pL. The projection of Ω−1(B) to L/pL will form a basis for L/pL, and
so L/pL is φ(m)-dimensional.

If r ∈ Z[X ], then let ρ(r) denote the polynomial in Z/pZ[X ] derived by reducing
the coefficients of r mod p. The proof of Lemma 1.2 demonstrated that (X − tj) |
ρ(
∑m−1
k=0 tkXk) if j 6≡ −1 mod p and hence that ρ(Ψm(X)) | ρ(

∑m−1
k=0 tkXk). Let

Υ(X) = h(X)Ψm(X), where

ρ(h(X)Ψm(X)) = ρ(
m−1∑
j=0

tjXj),
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and write the coefficients of Υ(X) into a vector v ∈ Zm. From the construction of
v, it is clear that v ∈ L ∩ C and that v 6∈ pL. From the definition of C, it follows
that v spans (L ∩ C)/pL and hence that

#{L/(L∩ C)} = #{(L/pL)/((L ∩ C)/pL)} = pφ(m)−1.

This proves the lemma.

It is another consequence of the lemma that d(L) =
√
| det(M)|, where

Mij = 〈Ω−1(ζi−1
m Ψm(ζm)),Ω−1(ζj−1

m Ψm(ζm))〉.
For α, γ ∈ Z[ζm], define 〈α, γ〉m = TrQ(ζm)/Q(αγ) ∈ Q. The following lemma will
be important in finding | det(M)|.

Lemma 6.2. If u, v ∈ L, then 〈u, v〉 = 〈Ω(u),Ω(v)〉m/m.

Proof. It suffices to prove the lemma in the case u = v, since

〈u, v〉 = (〈u+ v, u+ v〉 − 〈u− v, u− v〉)/4
and

〈Ω(u),Ω(v)〉m = (〈Ω(u+ v),Ω(u+ v)〉m − 〈Ω(u− v),Ω(u− v)〉m)/4.

Let u = (b0, . . . , bm−1); it follows that
∑m−1
k=0 bkζ

kd = 0 for gcd(d,m) 6= 1 because
u ∈ L. The lemma now follows from Lemma 1.4.

It is a consequence of Lemma 6.2 that
√
| det(M)| =

√
| det(D)|/mφ(m)/2, where

Djk = TrQ(ζm)/Q(ζjmΨm(ζm)ζkmΨm(ζm)). The next lemma gives the latter determi-
nant in terms of the discriminant of Ψm(ζm)Z[ζm].

Lemma 6.3. If D is as above, then | det(D)| = |DQ(ζm)/Q(Ψm(ζm)Z[ζm])|, where
DQ(ζm)/Q( ) denotes the discriminant.

Proof. If Gal(Q[ζm]/Q) = {σ1, ..., σφ(m)}, then D = PP ∗, where Pjk =

σk(ζjmΨm(ζm)) and P ∗ is the conjugate transpose of P. The determinant is a poly-
nomial in its entries, and so the following calculation proves the lemma:

| det(D)| = | det(P ) det(P ∗)|
= | det(P )det(P )|
= |(det(P ))2|
= |DQ(ζm)/Q(Ψm(ζm)Z[ζm])|.

It is known from algebraic number theory (see [4], p. 66) that

DQ(ζm)/Q(Ψm(ζm)Z[ζm]) = (NQ(ζm)/Q(Ψm(ζm)))2DQ(ζm)/Q(Z[ζm]).

Differentiating the equation Xm − 1 = Φm(X)Ψm(X) and substituting ζm for X
gives mζm−1

m = Φ′m(ζm)Ψm(ζm). Taking the norm of both sides gives

mφ(m) = |DQ(ζm)/Q(Z[ζm])NQ(ζm)/Q(Ψm(ζm))|.

Hence det(D) = m2φ(m)/|DQ(ζm)/Q(Z[ζm])| and so

d(L) =
√
| det(M)|

=
√
| det(D)|/mφ(m)/2

= mφ(m)/2|DQ(ζm)/Q(Z[ζm])|−1/2.
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It is also known from algebraic number theory (see [1], p. 88) that

|DQ(ζm)/Q(Z[ζm])| = mφ(m)/
∏

q prime
q|m

qφ(m)/(q−1).

This gives d(L) =
∏
q prime
q|m

qφ(m)/(2q−2). Theorem 6 follows from Lemma 6.1 to-

gether with the above equality.
The inequality M2(m, p) ≤ (

√
m)M1(m, p) gives an upper bound for M2(m, p).

If p is sufficiently large compared to m, then this bound can be improved by con-
sidering spheres. Let Sr = {x ∈ Rm|

√
〈x, x〉 < r}. In this case, vol(Sr ∩ V ) =

rφ(m)mφ(m)/2/Γ(φ(m)/2 + 1), where Γ is the gamma function. If

rφ(m)mφ(m)/2/Γ(φ(m)/2 + 1) > (2φ(m)
∏

q prime
q|m

qφ(m)/(2q−2))pφ(m)−1,

then there will be a non-zero point of C ∩ L that is in Sr ∩ V by Theorem 4 and
Theorem 6. Solving for r gives

r >

2(Γ(φ(m)/2 + 1))1/φ(m)
∏
q prime
q|m

q1/(2q−2)

√
m

 p1−1/φ(m).

If r can be chosen less than p, then M2(m, p) < r. This can be done if

2φ(m)Γ(φ(m)/2 + 1)
∏
q prime
q|m

qφ(m)/(2q−2)

mφ(m)/2
< p.

7. A theorem of Hecke

The material on the idele group presented here is taken from ([4], pp. 137–
143, 292–293) and ([1], p. 68). Suppose that k is an algebraic number field with
N = [k : Q], and denote the set of prime ideals in the ring of integers of k by P .
Let Mk be the set of absolute values on k, where each absolute value generates a
different topology on k and is normalized to induce a standard absolute value on Q.
A standard absolute value v on Q is of the form v(q) = |q| or v(q) = p−op(q), where
p is prime and op(q) is the exponent of p that appears in the prime factorization of
q. The set of archimedean absolute values is denoted by S∞, and the completion of
k with respect to an absolute value v is denoted by kv. The archimedean absolute
values v on k are all of the form v(x) = |σ(x)|, where σ is an embedding of k into
C.

The multiplicative group k∗v is locally compact in the topology generated by the
absolute value v on kv. If v is an absolute value arising from a prime ideal P , then
the absolute value will be called P -adic. If v is a P -adic absolute value, then the
group O∗v consisting of all k ∈ k∗v with v(k) = 1 forms a compact open subgroup of
k∗v . This group will be frequently referred to as the P -adic units.

If j ∈
∏
v∈Mk

k∗v , then let jv denote the vth component of j. The idele group Jk is
the set of all j such that jv is a P -adic unit for all but finitely many P -adic absolute
values v. The topology on Jk is that generated by sets of the form

∏
v∈Mk

Uv, where
Uv is open in k∗v and Uv = O∗v for all but finitely many P -adic valuations v. The
idele group Jk is a locally compact topological group with respect to this topology.
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A number of properties of Jk will become useful later on. First of all, note
that α ∈ k∗ is a P -adic unit for all but finitely many P -adic absolute values.
This implies that k∗ can be embedded in Jk by taking α to (α, α, . . . , α, . . . ). The
quotient Jk/k

∗ is called the idele class group of k, and is a topological group with
the quotient topology.

Secondly, define ‖j‖ =
∏
v∈Mk

v(jv). This product is well-defined, and deter-

mines a continuous group homomorphism from Jk to the multiplicative group R+

of positive real numbers. The kernel of this map is a closed subgroup of Jk denoted
by J0

k . It follows as a consequence of the product formula that k∗ ⊂ J0
k . The pro-

jection of J0
k to the idele class group gives a compact subgroup J0

k/k
∗ (see [4], p.

142).
The multiplicative group R+ can be embedded in Jk by taking a positive real

number t to the idele j whose archimedean components are t1/N and whose P -adic
components are 1. This embedding gives a decomposition of Jk as the internal direct
product of J0

k and R+. Define JS∞ to be the subgroup of Jk consisting of all ideles
whose archimedean components are 1 and whose P -adic components are P -adic
units. Let π be the projection from Jk to Jk/(R+k∗JS∞). The quotient topology
induced on Jk/(R+k∗JS∞) as a quotient of Jk is the same as that induced on
Jk/(R+k∗JS∞) as a quotient of the idele class group, and both π and the projection
π2 from the idele class group are continuous with respect to this topology. It follows
from previous remarks that π(J0

k ) = π2(J0
k/k

∗) = Jk/(R+k∗JS∞) is a compact
topological group.

If G is a compact topological group, then a character of G is a continuous group
homomorphism from G to the unit circle in the complex plane. The definition of
equidistribution is given in full generality in ([4], pp. 315–316), but it will only
be stated here in the context of prime ideals of the ring of integers of k. Define
τ : P → Jk as follows. For each prime ideal P, select an element γP ∈ k∗vP that
generates the prime ideal in OvP , and define τ(P ) to be the idele with γp in the
vP th component and 1 in all other components. Let Pr denote the set of prime
ideals P such that Nk/Q(P ) ≤ r. If λ is a map from Jk to a compact commutative
group G, then P is λ ◦ τ-equidistributed in G if

lim
r→∞

1

#(Pr)
∑
ψ∈Pr

χ ◦ λ ◦ τ(ψ) =

∫
G

χ(2)

for all characters χ of G. The measure on G is the unique Haar measure µ with
µ(G) = 1. The only property of Haar measure that will be used explicitly is that
µ(gU) = µ(U) for all Borel-measurable sets U and g ∈ G. See [2] for an in-depth
exposition of Haar measure.

If P is λ◦ τ -equidistributed in G, then equation (2) holds if χ is replaced by any
integrable function on G, where an integrable function is as defined in ([4], p. 316).
The next section will take for granted the fact that the characteristic function on
an open set is integrable.

The following theorem due to Hecke (see [4], p. 317) gives a criterion for P to be
λ◦τ -equidistributed in G. It follows from this theorem that P is π◦τ -equidistributed
in Jk/(R+k∗JS∞).

Theorem 7. If G is a compact commutative group and λ : Jk → G is a continuous
homomorphism such that λ(J0

k ) = G and λ(k∗) = {1}, then P is λ◦τ-equidistributed
in G.
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The next section will prove a theorem on the distribution of principal prime
ideals in Z[ζm] where m is a power of 2 or m = 6.

8. The distribution of principal prime ideals in cyclotomic fields

The following theorem will be critical in proving that the upper bound derived
in Section 2 is optimal if m is a power of 2 or m = 6.

Theorem 8. If m is a power of 2 or m = 6, then for all ε > 0, there is γ =∑φ(m)−1
j=0 γjζ

j
m ∈ Z[ζm] such that:

1. γ generates a prime ideal in Z[ζm],
2. NQ(ζm)/Q(γ) = p, where p is prime and p ≡ 1 mod m, and

3. if β = p/γ =
∑φ(m)−1
j=0 bjζ

j
m, then |bj/b0| < ε for 1 ≤ j ≤ φ(m)− 1.

There is also a γ satisfying the first two conditions together with the condition that
b0 > 0 and 1− ε < bj/b0 < 1 + ε for 1 ≤ j ≤ m/2− 1.

The first step in proving the theorem is to find an open set Uε ⊂ Jk/(R+k∗JS∞)
with the property that there is a γ satisfying conditions 1 and 3 in the theorem
if π ◦ τ(P ) is in Uε. The equidistribution criterion together with some additional
information on the distribution of primes will then show that there is a γ that sat-
isfies all the conditions of the theorem. The proof for the alternate third condition
is very similar.

To find Uε if m is a power of 2, let σ0, . . . , σφ(m)/2−1 be the embeddings of k into
C defined by σi(ζm) = ζzim , where 1 = z0 < · · · < zφ(m)/2−1 = m/2−1 are relatively
prime to m. These embeddings induce all of the archimedean absolute values on

k, and give a metric d on kφ(m)/2 defined by d(c, c′) =
√∑φ(m)/2−1

j=0 |σj(cj − c′j)|2,
where cj and c′j are the jth components of cj and c′j , respectively. This metric

extends to a metric d on Cφ(m)/2, and d generates the topology on Cφ(m)/2 as a
subset of Jk. Consider C as being embedded in Cφ(m)/2 along the diagonal, and

suppose that c =
∑φ(m)−1
i=0 qiζ

i
m ∈ k∗ with d(0, c) < η/

√
2φ(m), where η > 0 is

chosen so that η/(1− η) < ε and (1− η)/(1 + η) > 1− ε. The following lemma will
put a bound on |qi|.

Lemma 8.1. If c is as above, and m is a power of 2 with m ≥ 4, then |qi| < η for
0 ≥ i ≥ φ(m)− 1.

Proof. First of all, note that j+m/2 is relatively prime to m if j is relatively prime
to m. This implies that TrQ(ζm)/Q(ζm) = 0, and hence that TrQ(ζm)/Q(ζim) = 0 if

i 6≡ 0 mod m/2, since ζim is a primitive m/ gcd(m, i)th root of unity. It then follows

from a straightforward computation that TrQ(ζm)/Q(cjcj) = φ(m)
∑φ(m)−1

i=0 q2
i . If

σ ∈ Gal(Q(ζm)/Q), then σ = σj or σ = σj for some j. The lemma now follows from
the following calculation.

|qi| ≤

√√√√φ(m)−1∑
j=0

q2
i

=
√
φ(m)TrQ(ζm)/Q(cjcj)

=
√

2φ(m)d2(0, 1/c)

< η.
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Let U = {c | d(c, 1) < η/
√

2φ(m)} and let Uε be the open set π(U ×
∏
vO∗v),

where the product ranges over all P -adic absolute values. The process is the same

for the alternate third condition, except that U = {c | d(c,
∑φ(m)−1
j=0 ζjm) < η/

√
2}.

If m = 6, then every c ∈ C has a unique representation of the form r1 + r2ζm with
r1, r2 ∈ R, and so U = {c | |r1/r2| < ε}, or U = {c | |r1 − 1| < η, |r2 − 1| < η} for
the alternate third condition.

If π ◦ τ(P ) ∈ Uε, then it is possible to write τ(P ) = γrjSu, where γ ∈ k∗, r ∈
R+, jS ∈ JS∞ , and u ∈ U. An examination of the components shows that γ is a
prime element in the P -adic completion and a P ′-adic unit for all P ′ ∈ P that are
different from P. It follows that γ ∈ Z[ζm] and that γ generates P. Since U is an
open set, it is possible to find q ∈ Q sufficiently close to r so that 1/γ = qu′ with

u′ ∈ k∗∩U. If u′ =
∑φ(m)−1
j=0 qjζ

j
m, then |q0−1| < η and |qj | < η for 1 ≤ j ≤ φ(m)−1

by the previous lemma, so that |qj |/|q0| < ε for 1 ≤ j ≤ φ(m)− 1. This shows that
there is a γ satisfying conditions 1 and 3 if π◦τ(P ) ∈ Uε. The proof of the equivalent
statement for the alternate third condition is the same. Note that it is possible to
assume without loss of generality that the qj ’s are positive in this case, since the
previous lemma shows that they are close to 1. The same statements follow in a
straightforward manner if m = 6.

If χ is the characteristic function on Uε, meaning that χ is 1 on Uε and 0 outside
of Uε, then equation (2) becomes the following equation:

lim
r→∞

#(Pr ∩ Uε)
#(Pr)

= µ(Uε).

The following lemma will show that there are infinitely many primes P that are in
Uε.

Lemma 8.2. Suppose G is a compact topological group with the unique Haar mea-
sure µ such that µ(G) = 1. If U is a non-empty open subset of G, then µ(U) > 0.

Proof. If G is a topological group, then
⋃
g∈G gU is an open cover of G, and so G

can be written in the form G =
⋃n
j=0 gjU for some finite set {g0, . . . , gn} ⊂ G. It

follows that µ(G) = 1 ≤ nµ(U) since µ is Haar measure, and so µ(U) ≥ 1/n > 0.
The next lemma will show that there must be infinitely many primes P such

that P ∈ Uε and P satisfies the second condition. This will complete the proof of
the theorem.

Lemma 8.3. If Pp is the set of prime ideals with prime norm, then

lim
r→∞

#(Pr ∩ Pp)
#(Pr)

= 1.

Proof. If NQ(ζm)/Q(P ) = p with p prime, then there are φ(m) prime ideals lying

above p and p ≡ 1 mod m. In general,NQ(ζm)/Q(P ) = po(p), and there are φ(m)/o(p)
ideals lying over p, where P ∩ Z = pZ, and o(p) is the multiplicative order of
p mod m. The above limit then becomes the following:

lim
r→∞

φ(m)#{p | p prime, p < r, p ≡ 1 mod m}∑
j∈(Z/mZ)∗

φ(m)
o(j) #{p | p prime, p ≡ j mod m, p < r1/o(j)}

.

Divide both the numerator and denominator of this fraction by

#{p | p prime, p < r}.
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By Dirichlet’s theorem on the distribution of primes in arithmetic progressions (see
[7], p. 31), the numerator and the 1 mod m component of the denominator tend
to 1 as r → ∞, while the other components of the denominator tend to 0. To see
this fact for the other components, divide the numerator and denominator of the
component by #{p | p prime, p < r1/o(j)}. By Dirichlet’s theorem, the numerator
tends to 1/o(j), and the denominator tends to r1−1/o(j)/o(j) by the Prime Number
Theorem. The lemma now follows.

The next section will be devoted to the application of Theorem 8 to the problem
of finding optimal possible bounds for M1(m, p).

9. What are the optimal bounds for M1(m, p)?

If m is a power of 2, then it was proven in Section 2 that Km ≤ 1, where Km is
as defined in Section 1. The following theorem shows that equality holds.

Theorem 9. If m is a power of 2, then Km = 1.

Suppose without loss of generality that γZ[ζm] = Pm−1, where γ is as in The-
orem 8 and Pj is as defined in Section 2. It is clear that β = p/γ is an el-
ement of Z[ζm], and it follows from Theorem 8 that |bj/b0| < ε for 1 ≤ j ≤
φ(m) − 1. The next lemma shows that there is a coset C of µm in (Z/pZ)∗ with
C = {±b0, . . . ,±bm/2−1}.

Lemma 9.1. If m is a power of 2, β ∈
∏m/2−2
j=0 P2j+1, and β 6∈ Pm−1, then bi ≡

b0t
i mod p for 1 ≤ i ≤ m/2− 1, and b0 6≡ 0 mod p.

Proof. It is a consequence of the definition of Pj that ζm ≡ tj mod Pj , and hence

that
∑m/2−1
i=0 bit

ij ≡ 0 mod p for all odd numbers j with j 6≡ −1 mod m. This
means that the vector v = (b0 mod p, . . . , bm/2−1 mod p) is in the nullspace of
an (m/2 − 1) × m/2 Vandermonde matrix A with nullity(A) = 1. A geometric
series computation shows that w = (1 mod p, t mod p, . . . , tm/2−1 mod p) is in the
nullspace of A, and so v is a scalar multiple of w over Z/pZ. It follows that bi ≡
b0t

i mod p for 1 ≤ i ≤ m/2− 1, and b0 6≡ 0 mod p since β 6∈ Pm−1.

Suppose that C′ is a coset of µm in (Z/pZ)∗. Let β′ =
∑m/2−1
j=0 b′jζ

j
m, where

b′0 ∈ C′ and b′j ≡ b′0t
j for 1 ≤ j ≤ m/2− 1. The same argument as in Lemma 1.2

shows that β′ ∈ Pj if j 6= m−1, and so β′ = cβ for some c =
∑m/2−1
j=0 cjζ

j
m ∈ Z[ζm].

Suppose that |ck| = max0≤j≤m/2−1 |cj |. The calculation below gives a lower bound
for |C′| in terms of |b0| :

|C′| ≥ |b′k|

= |
k∑
j=0

bjck−j −
m/2−1∑
j=k+1

bjcm/2+k−j |

≥ |b0ck| −
k∑
j=1

|bjck−j | −
m/2−1∑
j=k+1

|bjcm/2+k−j |

≥ |b0ck|(1− (m/2− 1)ε)

≥ |b0|(1− (m/2− 1)ε).
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It also follows that |b0| ≥ ( 1
1+(m/2−1)ε )p

1−2/m, since

|NQ(ζm)/Q(β)| = pm/2−1

=

m/2−1∏
j=0

|
m/2−1∑
l=0

blζ
l(2j+1)
m |

≤
m/2−1∏
j=0

m/2−1∑
l=0

|bl|

≤ (|b0|(1 + (m/2− 1)ε))m/2.

Combining the inequalities for |C′| and |b0| gives

M1(m, p) ≥
(

1− (m/2− 1)ε

1 + (m/2− 1)ε

)
p1−2/m.

Letting ε→ 0 proves Theorem 9.
Let κm be the supremum of all κ such that M1(m, p) ≥ κp1−1/φ(m) for all

primes p. Section 2 gives a lower bound for κm, and the following theorem applies
Theorem 8 to give an upper bound in the case where m is a power of 2. This
theorem proves that the upper bound M1(4, p) ≥ (

√
2/2)p1/2 proven in Section 2

is optimal.

Theorem 10. If m is a power of 2, then κm ≤ 1
21−2/m .

Proof. Let β satisfy the alternate third condition in Theorem 8. Write β =

b0(
∑m/2−1
j=0 ζjm +

∑m/2−1
j=0 djζ

j
m), where |dj | < ε for 0 ≤ j ≤ m/2 − 1, and note

that
∑m/2−1
j=0 ζjm = 2/(1 − ζm) with NQ(ζm)/Q(2/(1 − ζm)) = 2m/2−1. An upper

bound will be placed on |b0| by using the fact that pm/2−1 = |NQ(ζm)/Q(β)|. The
right-hand side of this equality expands as

|b0|m/2|
m/2−1∏
i=0

2/(1− ζ2i+1
m ) +

m/2−1∑
j=0

cjζ
(2i+1)j
m |.

One term in the product is NQ(ζm)/Q(2/(1− ζm)), and each of the other 2m/2 − 1
terms has absolute value that is bounded above by

f(m)ε = (1/(1− cos(2π/m)))m/2−1mε.

The cosine term comes from the absolute value of |1− ζm| and the mε term is an

upper bound for
∑m/2−1
j=0 cjζ

ij
m. Putting these bounds together gives the inequality

pm/2−1 ≥ |b0|m/2|2m/2−1 − (2m/2 − 1)f(m)ε|,
or

|b0| ≤
(

1

|2m/2−1 − (2m/2 − 1)f(m)ε|2/m

)
p1−2/m.

Lemma 9.1 shows that there is a coset C with C = {±b0, . . . ,±bm/2−1}, and so
M1(m, p) ≤ |C| ≤ (1 + ε)|b0|. Letting ε→ 0 proves the theorem.

If m = 2e3f with e, f > 0, then the upper bound

M1(m, p) ≤ (2/
√

3)p1−m/3
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proven in Section 2 is the same as the bound proven by Robinson. This suggests
that perhaps this bound is optimal. In general, this seems difficult to prove, in part
because it seems difficult to extend Theorem 8 to this case. Theorem 8 does apply,
however, when m = 6, and plays a crucial role in the following result, which shows
that the upper bound from Section 2 is optimal.

Theorem 11. If Km and κm are as previously defined, then K6 = 2/
√

3 and
κ6 ≤ 1.

Proof. Pick β and γ that satisfy the alternate third condition in Theorem 8, and
suppose without loss of generality that γZ[ζm] = Pm−1, so that βZ[ζm] = P1. It
follows that b0 + b1t ≡ 0 mod p, and hence that b1 ≡ b0t

2 mod p. This means that
b0 + b1 ≡ b0(1 + t2) ≡ b0t mod p, which gives a coset C = {±b0,±(b0 + b1),±b1}.
Note that

NQ(ζm)/Q(β) = p = b0 + b0b1 + b21 ≤ b20(1 + (1 + ε) + (1 + ε)2),

which implies that b0 + b1 ≥ (2− ε)
(

p
1+(1+ε)+(1+ε)2

)1/2

.

Suppose that C′ is another coset with C′ = {±b′0,±(b′0 + b′1),±b′1}, where b1 ≡
b0t

2 mod p. It follows that b′0 + b′1ζm ∈ P1, and so

b′0 + b′1ζm = (c0 + c1ζm)(b0 + b1ζm)

for some c0, c1 ∈ Z. If c1 = 0, then |b′0 + b′1| = |c0||b0 + b1| ≥ |b0 + b1|. Suppose now
without loss of generality that c1 > 0. If c0 = 0, then |b′1| = c1|b0+b1|. If c0 > 0, then
|b′1| = (c0+c1)b1+c1b0 > b0+b1, and c0 < 0 implies that |b′0| = |c0b0−c1b1| > b0+b1.
It now follows that

|C′| ≥ |C| ≥ (2− ε)
(

p

1 + (1 + ε) + (1 + ε)2

)1/2

,

which proves the first part of the theorem.

To prove the second part of the theorem, let γ, β, and C be as before, except that
β satisfies the regular third condition of Theorem 8. Under these circumstances, it
follows that |C| ≤ (1 + ε)|b0| and that

p = b20 + b0b1 + b21 ≤ b20(1 + ε+ ε2).

Solving for b0 gives |C| ≤ 1+ε√
1+ε+ε2

√
p, which proves the second part of the theorem.

In general, the bounds from Section 2 can be improved by finding the volume of
S1/2 ∩V exactly instead of using the Vaaler estimate. It is doubtful, however, that
this improvement will lead to an optimal bound.
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