ON SOME INEQUALITIES FOR THE INCOMPLETE GAMMA FUNCTION

HORST ALZER

Abstract. Let $p \neq 1$ be a positive real number. We determine all real numbers $\alpha=\alpha(p)$ and $\beta=\beta(p)$ such that the inequalities

$$
\left[1-e^{-\beta x^{p}}\right]^{1 / p}<\frac{1}{\Gamma(1+1 / p)} \int_{0}^{x} e^{-t^{p}} d t<\left[1-e^{-\alpha x^{p}}\right]^{1 / p}
$$

are valid for all $x>0$. And, we determine all real numbers a and b such that

$$
-\log \left(1-e^{-a x}\right) \leq \int_{x}^{\infty} \frac{e^{-t}}{t} d t \leq-\log \left(1-e^{-b x}\right)
$$

hold for all $x>0$.

1. Introduction

In 1955, J. T. Chu [1] presented sharp upper and lower bounds for the error function $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t$. He proved that the inequalities

$$
\begin{equation*}
\left[1-e^{-r x^{2}}\right]^{1 / 2} \leq \operatorname{erf}(x) \leq\left[1-e^{-s x^{2}}\right]^{1 / 2} \tag{1.1}
\end{equation*}
$$

are valid for all $x \geq 0$ if and only if $0 \leq r \leq 1$ and $s \geq 4 / \pi$. The right-hand inequality of (1.1) (with $s=4 / \pi$) was proved independently by J. D. Williams (1946) and G. Pólya (1949); see [1].

An interesting survey on inequalities involving the complementary error function $\operatorname{erfc}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} d t$ and related functions is given in [4, pp. 177-181]. In particular, one can find inequalities for Mills' ratio $e^{x^{2} / 2} \int_{x}^{\infty} e^{-t^{2} / 2} d t$, derived by several authors.

In 1959, W. Gautschi [3] provided upper and lower bounds for the more general expression

$$
\begin{equation*}
I_{p}(x)=e^{x^{p}} \int_{x}^{\infty} e^{-t^{p}} d t \tag{1.2}
\end{equation*}
$$

He established that the double-inequality

$$
\begin{equation*}
\frac{1}{2}\left[\left(x^{p}+2\right)^{1 / p}-x\right]<I_{p}(x) \leq c_{p}\left[\left(x^{p}+1 / c_{p}\right)^{1 / p}-x\right] \tag{1.3}
\end{equation*}
$$

(with $c_{p}=[\Gamma(1+1 / p)]^{p /(p-1)}$) holds for all real numbers $p>1$ and $x \geq 0$. It has been pointed out in [3] that the integral in (1.2) for $p=3$ occurs in heat transfer problems, and for $p=4$ in the study of electrical discharge through gases. We note

[^0]that the integral $\int_{x}^{\infty} e^{-t^{p}} d t$ can be expressed in terms of the incomplete gamma function
$$
\Gamma(a, x)=\int_{x}^{\infty} t^{a-1} e^{-t} d t
$$
namely,
$$
\int_{x}^{\infty} e^{-t^{p}} d t=\frac{1}{p} \Gamma\left(\frac{1}{p}, x^{p}\right) .
$$

Gautschi [3] showed that the inequalities (1.3) can be used to derive bounds for the exponential integral $E_{1}(x)=\Gamma(0, x)$. Indeed, if p tends to ∞, then (1.3) leads to

$$
\begin{equation*}
\frac{1}{2} \log \left(1+\frac{2}{x}\right) \leq e^{x} E_{1}(x) \leq \log \left(1+\frac{1}{x}\right) \quad(0<x<\infty) \tag{1.4}
\end{equation*}
$$

It is the main purpose of this paper to establish new inequalities for $\int_{0}^{x} e^{-t^{p}} d t$ and $\int_{x}^{\infty} e^{-t^{p}} d t$. In Section 2 we present sharp upper and lower bounds for

$$
\frac{1}{\Gamma(1+1 / p)} \int_{0}^{x} e^{-t^{p}} d t \quad \text { and } \quad \frac{1}{\Gamma(1+1 / p)} \int_{x}^{\infty} e^{-t^{p}} d t
$$

which are valid not only for $p>1$, but also for $p \in(0,1)$. In particular, we obtain an extension of Chu's double-inequality (1.1). Moreover, we provide sharp inequalities for the exponential integral $E_{1}(x)$. Finally, in Section 3 we compare our bounds with those given in (1.3) and (1.4).

2. Main Results

First, we generalize the inequalities (1.1).
Theorem 1. Let $p \neq 1$ be a positive real number, and let $\alpha=\alpha(p)$ and $\beta=\beta(p)$ be given by

$$
\alpha=1, \quad \beta=[\Gamma(1+1 / p)]^{-p}, \quad \text { if } 0<p<1
$$

and

$$
\alpha=[\Gamma(1+1 / p)]^{-p}, \quad \beta=1, \quad \text { if } p>1
$$

Then we have for all positive real x :

$$
\begin{equation*}
\left[1-e^{-\beta x^{p}}\right]^{1 / p}<\frac{1}{\Gamma(1+1 / p)} \int_{0}^{x} e^{-t^{p}} d t<\left[1-e^{-\alpha x^{p}}\right]^{1 / p} \tag{2.1}
\end{equation*}
$$

Proof. We have to show that the functions

$$
F_{p}(x)=\int_{0}^{x} e^{-t^{p}} d t-\Gamma(1+1 / p)\left[1-e^{-x^{p}}\right]^{1 / p}
$$

and

$$
G_{p}(x)=-\int_{0}^{x} e^{-t^{p}} d t+\Gamma(1+1 / p)\left[1-e^{-a x^{p}}\right]^{1 / p} \quad\left(a=[\Gamma(1+1 / p)]^{-p}\right)
$$

are both positive on $(0, \infty)$, if $p>1$, and are both negative on $(0, \infty)$, if $0<p<1$.
First, we determine the sign of $F_{p}(x)$. Differentiation yields

$$
e^{x^{p}} \frac{\partial}{\partial x} F_{p}(x)=1-\Gamma(1+1 / p)[L(z(x))]^{(1-p) / p}
$$

where

$$
L(z)=(z-1) / \log (z) \quad \text { and } \quad z(x)=e^{-x^{p}}
$$

Setting $f_{p}(x)=e^{x^{p}} \frac{\partial}{\partial x} F_{p}(x)$, we obtain

$$
\begin{equation*}
\frac{\partial}{\partial x} f_{p}(x)=\left.\frac{p-1}{p} \Gamma(1+1 / p)(L(z(x)))^{-2+1 / p} \frac{d}{d x} z(x) \frac{d}{d z} L(z)\right|_{z=z(x)} \tag{2.2}
\end{equation*}
$$

Since

$$
\frac{d}{d z} L(z)=[\log (z)-1+1 / z] /(\log (z))^{2}>0 \quad(0<z \neq 1)
$$

and

$$
\frac{d}{d x} z(x)<0
$$

we conclude from (2.2) that

$$
\frac{\partial}{\partial x} f_{p}(x)<0, \quad \text { if } p>1
$$

and

$$
\frac{\partial}{\partial x} f_{p}(x)>0, \quad \text { if } 0<p<1
$$

If $p>1$, then we have

$$
f_{p}(0)=1-\Gamma(1+1 / p)>0 \quad \text { and } \quad \lim _{x \rightarrow \infty} f_{p}(x)=-\infty
$$

which implies that there exists a number $x_{0}>0$ such that $f_{p}(x)>0$ for $x \in\left(0, x_{0}\right)$ and $f_{p}(x)<0$ for $x \in\left(x_{0}, \infty\right)$. Hence, the function $x \mapsto F_{p}(x)$ is strictly increasing on $\left[0, x_{0}\right]$ and strictly decreasing on $\left[x_{0}, \infty\right)$. Since $F_{p}(0)=\lim _{x \rightarrow \infty} F_{p}(x)=0$, we obtain $F_{p}(x)>0$ for all $x>0$.

If $0<p<1$, then we have

$$
f_{p}(0)=1-\Gamma(1+1 / p)<0 \quad \text { and } \quad \lim _{x \rightarrow \infty} f_{p}(x)=1
$$

This implies that there exists a number $x_{1}>0$ such that $x \mapsto F_{p}(x)$ is strictly decreasing on $\left[0, x_{1}\right]$ and strictly increasing on $\left[x_{1}, \infty\right)$. From $F_{p}(0)=\lim _{x \rightarrow \infty} F_{p}(x)=$ 0 we conclude that $F_{p}(x)<0$ for all $x>0$.

Next, we consider $G_{p}(x)$. Differentiation leads to

$$
\begin{equation*}
e^{x^{p}} \frac{\partial}{\partial x} G_{p}(x)=-1+(y(x))^{1-1 / a}[L(y(x))]^{(1-p) / p} \tag{2.3}
\end{equation*}
$$

where

$$
L(y)=(y-1) / \log (y) \quad \text { and } \quad y(x)=e^{-a x^{p}}
$$

with $a=a(p)=[\Gamma(1+1 / p)]^{-p}$. To determine the sign of $\frac{\partial}{\partial x} G_{p}(x)$ we need the inequalities

$$
\begin{equation*}
0<\left(1-\frac{1}{a(p)}\right) \frac{p}{p-1}<\frac{1}{2} \quad \text { for } 0<p \neq 1 \tag{2.4}
\end{equation*}
$$

The left-hand inequality of (2.4) is obviously true. A simple calculation reveals that the second inequality of (2.4) is equivalent to

$$
\begin{equation*}
(1-x)\left[\Gamma(x+1)-\left(\frac{x+1}{2}\right)^{x}\right]>0 \quad \text { for } 0<x \neq 1 \tag{2.5}
\end{equation*}
$$

To establish (2.5) we define for $x>0$:

$$
g(x)=\log \Gamma(x+1)-x \log \frac{x+1}{2}
$$

Then we have

$$
\begin{aligned}
\frac{d^{2}}{d x^{2}} g(x) & =\frac{d}{d x} \psi(x+1)-\frac{x+2}{(x+1)^{2}}=\sum_{n=2}^{\infty} \frac{1}{(x+n)^{2}}-\frac{1}{x+1} \\
& <\int_{1}^{\infty} \frac{d t}{(x+t)^{2}}-\frac{1}{x+1}=0
\end{aligned}
$$

Thus, g is strictly concave on $[0, \infty)$. Since $g(0)=g(1)=0$, we conclude that g is positive on $(0,1)$ and negative on $(1, \infty)$. This implies (2.5).

Let $0<r<1 / 2$; we define for $y \in(0,1)$:

$$
h_{r}(y)=y^{r} \log (y) /(y-1) .
$$

Then we get

$$
\begin{aligned}
(y-1)^{2} y^{1-r} \frac{\partial}{\partial y} h_{r}(y) & =[(r-1) y-r] \log (y)+y-1 \\
& =\varphi_{r}(y), \quad \text { say. }
\end{aligned}
$$

Since

$$
\frac{\partial^{2}}{\partial y^{2}} \varphi_{r}(y)=\frac{r-1}{y^{2}}\left[y-\frac{r}{1-r}\right],
$$

it follows that φ_{r} is strictly convex on $\left(0, \frac{r}{1-r}\right)$ and strictly concave on $\left(\frac{r}{1-r}, 1\right)$. From $\lim _{y \rightarrow 0} \varphi_{r}(y)=\infty$,

$$
\varphi_{r}(1)=\left.\frac{\partial}{\partial y} \varphi_{r}(y)\right|_{y=1}=0 \quad \text { and }\left.\quad \frac{\partial^{2}}{\partial y^{2}} \varphi_{r}(y)\right|_{y=1}=2 r-1<0
$$

we conclude that there exists a number $y_{0} \in(0,1)$ such that φ_{r} is positive on $\left(0, y_{0}\right)$ and negative on $\left(y_{0}, 1\right)$. This implies that $y \mapsto h_{r}(y)$ is strictly increasing on $\left(0, y_{0}\right)$ and strictly decreasing on $\left(y_{0}, 1\right)$. Since $\lim _{y \rightarrow 0} h_{r}(y)=0$ and $\lim _{y \rightarrow 1} h_{r}(y)=1$, we conclude that there exists a number $y_{1} \in(0,1)$ such that $h_{r}(y)<1$ for $y \in\left(0, y_{1}\right)$ and $h_{r}(y)>1$ for $y \in\left(y_{1}, 1\right)$. The function $y(x)=e^{-a x^{p}}$ is strictly decreasing on $[0, \infty)$. Since $y(0)=1$ and $\lim _{x \rightarrow \infty} y(x)=0$, there exists a number $x^{*}>0$ such that

$$
y_{1}<y(x)<1 \quad \text { for } x \in\left(0, x^{*}\right)
$$

and

$$
0<y(x)<y_{1} \quad \text { for } x \in\left(x^{*}, \infty\right)
$$

Hence, we have:
If $0<x<x^{*}$, then $h_{r}(y(x))>1$, and, if $x^{*}<x$, then $h_{r}(y(x))<1$. We set $r=\left(1-\frac{1}{a(p)}\right) \frac{p}{p-1}$; then we obtain from (2.3) that

$$
h_{r}(y(x))=\left[1+e^{x^{p}} \frac{\partial}{\partial x} G_{p}(x)\right]^{p /(p-1)} .
$$

Therefore, if $p>1$, then

$$
\frac{\partial}{\partial x} G_{p}(x)>0 \quad \text { for } x \in\left(0, x^{*}\right) \quad \text { and } \quad \frac{\partial}{\partial x} G_{p}(x)<0 \quad \text { for } x \in\left(x^{*}, \infty\right)
$$

and, if $0<p<1$, then

$$
\frac{\partial}{\partial x} G_{p}(x)<0 \quad \text { for } x \in\left(0, x^{*}\right) \quad \text { and } \quad \frac{\partial}{\partial x} G_{p}(x)>0 \quad \text { for } x \in\left(x^{*}, \infty\right)
$$

Since $G_{p}(0)=\lim _{x \rightarrow \infty} G_{p}(x)=0$, we conclude that

$$
G_{p}(x)>0 \quad \text { for } x \in(0, \infty), \text { if } p>1
$$

and

$$
G_{p}(x)<0 \quad \text { for } x \in(0, \infty), \text { if } 0<p<1
$$

This completes the proof of Theorem 1.
Remark. It is natural to ask whether the double-inequality (2.1) can be refined by replacing α by a positive number which is smaller than

$$
\max \left\{1,[\Gamma(1+1 / p)]^{-p}\right\}= \begin{cases}1, & \text { if } 0<p<1 \\ {[\Gamma(1+1 / p)]^{-p},} & \text { if } p>1\end{cases}
$$

or by replacing β by a number which is greater than

$$
\min \left\{1,[\Gamma(1+1 / p)]^{-p}\right\}= \begin{cases}{[\Gamma(1+1 / p)]^{-p},} & \text { if } 0<p<1 \\ 1, & \text { if } p>1\end{cases}
$$

We show that the answer is "no"! Let $\alpha>0$ be a real number such that the right-hand inequality of (2.1) holds for all $x>0$. This implies that the function

$$
\widetilde{F}_{p}(x)=\int_{0}^{x} e^{-t^{p}} d t-\Gamma(1+1 / p)\left[1-e^{-\alpha x^{p}}\right]^{1 / p}
$$

is negative on $(0, \infty)$. Since $\widetilde{F}_{p}(0)=0$, we obtain

$$
\left.\frac{\partial}{\partial x} \widetilde{F}_{p}(x)\right|_{x=0}=1-\alpha^{1 / p} \Gamma(1+1 / p) \leq 0
$$

which leads to $\alpha \geq[\Gamma(1+1 / p)]^{-p}$. If $\alpha \in(0,1)$, then we conclude from

$$
\lim _{x \rightarrow \infty} e^{x^{p}} \frac{\partial}{\partial x} \widetilde{F}_{p}(x)=-\infty
$$

that there exists a number $\bar{x}>0$ such that $x \mapsto \widetilde{F}_{p}(x)$ is negative and strictly decreasing on $[\bar{x}, \infty)$. This contradicts $\lim _{x \rightarrow \infty} \widetilde{F}_{p}(x)=0$. Thus, we have $\alpha \geq$ $\max \left\{1,[\Gamma(1+1 / p)]^{-p}\right\}$.

Next, we suppose that $\beta>0$ is a real number such that the first inequality of (2.1) is valid for all $x>0$. This implies

$$
\widetilde{G}_{p}(x)=-\int_{0}^{x} e^{-t^{p}} d t+\Gamma(1+1 / p)\left[1-e^{-\beta x^{p}}\right]^{1 / p}<0
$$

for all $x>0$. Since $\widetilde{G}_{p}(0)=0$, we obtain

$$
\left.\frac{\partial}{\partial x} \widetilde{G}_{p}(x)\right|_{x=0}=\beta^{1 / p} \Gamma(1+1 / p)-1 \leq 0
$$

which yields $\beta \leq[\Gamma(1+1 / p)]^{-p}$. If $\beta>1$, then we get

$$
\lim _{x \rightarrow \infty} e^{x^{p}} \frac{\partial}{\partial x} \widetilde{G}_{p}(x)=-1
$$

This implies that there exists a number $\tilde{x}>0$ such that $x \mapsto \widetilde{G}_{p}(x)$ is negative and strictly decreasing on $[\tilde{x}, \infty)$. This contradicts $\lim _{x \rightarrow \infty} \widetilde{G}_{p}(x)=0$. Hence, we get $\beta \leq \min \left\{1,[\Gamma(1+1 / p)]^{-p}\right\}$.

As an immediate consequence of Theorem 1, the Remark, and the representation $\int_{x}^{\infty} e^{-t^{p}} d t=\Gamma(1+1 / p)-\int_{0}^{x} e^{-t^{p}} d t$, we obtain the following sharp bounds for the ratio $\int_{x}^{\infty} e^{-t^{p}} d t / \int_{0}^{\infty} e^{-t^{p}} d t$.
Corollary. Let $p \neq 1$ be a positive real number. The inequalities

$$
\begin{equation*}
1-\left[1-e^{-\alpha x^{p}}\right]^{1 / p}<\frac{1}{\Gamma(1+1 / p)} \int_{x}^{\infty} e^{-t^{p}} d t<1-\left[1-e^{-\beta x^{p}}\right]^{1 / p} \tag{2.6}
\end{equation*}
$$

are valid for all positive x if and only if

$$
\alpha \geq \max \left\{1,[\Gamma(1+1 / p)]^{-p}\right\} \quad \text { and } \quad 0 \leq \beta \leq \min \left\{1,[\Gamma(1+1 / p)]^{-p}\right\}
$$

Now, we provide new upper and lower bounds for the exponential integral $E_{1}(x)=\int_{x}^{\infty} \frac{e^{-t}}{t} d t$.
Theorem 2. The inequalities

$$
\begin{equation*}
-\log \left(1-e^{-a x}\right) \leq E_{1}(x) \leq-\log \left(1-e^{-b x}\right) \tag{2.7}
\end{equation*}
$$

are valid for all positive real x if and only if

$$
a \geq e^{C} \quad \text { and } \quad 0<b \leq 1
$$

where $C=0.5772 \ldots$ is Euler's constant.
Proof. The function $t \mapsto-\log \left(1-e^{-t x}\right)(x>0)$ is strictly decreasing on $(0, \infty)$. Therefore, it suffices to prove (2.7) with $a=e^{C}$ and $b=1$. Let $p>1$; from (2.6) with $\alpha=[\Gamma(1+1 / p)]^{-p}, \beta=1$, and x instead of x^{p}, we obtain

$$
\Gamma(1 / p)\left[1-\left(1-e^{-\alpha x}\right)^{1 / p}\right]<\int_{x}^{\infty} t^{-1+1 / p} e^{-t} d t<\Gamma(1 / p)\left[1-\left(1-e^{-x}\right)^{1 / p}\right]
$$

If p tends to ∞, then we get

$$
-\log \left(1-e^{-a x}\right) \leq E_{1}(x) \leq-\log \left(1-e^{-x}\right)
$$

with $a=e^{C}$.
We assume that there exists a real number $b>1$ such that

$$
E_{1}(x) \leq-\log \left(1-e^{-b x}\right)
$$

holds for all $x>0$. Since

$$
e^{x} E_{1}(x)=\sum_{k=1}^{n}(-1)^{k-1}(k-1)!x^{-k}+r_{n}(x) \quad(x>0)
$$

with

$$
\left|r_{n}(x)\right|<n!x^{-n-1}
$$

(see [2, pp. 673-674]), we obtain

$$
\begin{equation*}
e^{x} x \log \left(1-e^{-b x}\right) \leq-1-x r_{1}(x) \tag{2.8}
\end{equation*}
$$

If we let x tend to ∞, then inequality (2.8) implies $0 \leq-1$. Hence, we have $b \leq 1$.
Using the representation

$$
E_{1}(x)=-C-\log (x)-\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n}}{n!n} \quad(x>0)
$$

(see [2, p. 674]), we conclude from the left-hand inequality of (2.7) that

$$
\log \frac{x}{1-e^{-a x}} \leq-C-\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n}}{n!n}
$$

If x tends to 0 , then we obtain

$$
\log (1 / a) \leq-C \quad \text { or } \quad a \geq e^{C} .
$$

The proof of Theorem 2 is complete.

3. Concluding remarks

In the final part of this paper we want to compare the bounds for the integrals $\int_{x}^{\infty} e^{-t^{p}} d t(p>1)$ and $\int_{x}^{\infty} \frac{e^{-t}}{t} d t$ which are given in (1.3), (2.6) and (1.4), (2.7), respectively. First, we consider the bounds for $\int_{x}^{\infty} e^{-t^{p}} d t$. We define

$$
R_{p}(x)=\Gamma(1+1 / p)\left\{1-\left[1-e^{-\alpha x^{p}}\right]^{1 / p}\right\}-\frac{e^{-x^{p}}}{2}\left[\left(x^{p}+2\right)^{1 / p}-x\right]
$$

with

$$
\alpha=[\Gamma(1+1 / p)]^{-p} \quad \text { and } \quad p>1
$$

Then we have

$$
\begin{aligned}
R_{p}(0) & =\Gamma(1+1 / p)-2^{-1+1 / p}>0 \\
\lim _{x \rightarrow \infty} R_{p}(x) & =0 \quad \text { and } \quad \lim _{x \rightarrow \infty} e^{x^{p}} \frac{\partial}{\partial x} R_{p}(x)=1
\end{aligned}
$$

This implies

$$
R_{p}(x)>0 \quad \text { for all sufficiently small } x>0
$$

and

$$
R_{p}(x)<0 \quad \text { for all sufficiently large } x
$$

Let

$$
S_{p}(x)=\Gamma(1+1 / p)\left\{1-\left[1-e^{-x^{p}}\right]^{1 / p}\right\}-c e^{-x^{p}}\left[\left(x^{p}+1 / c\right)^{1 / p}-x\right]
$$

with

$$
c=[\Gamma(1+1 / p)]^{p /(p-1)} \quad \text { and } \quad p>1 .
$$

From $S_{p}(0)=0$,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\partial}{\partial x} S_{p}(x) & =[\Gamma(1+1 / p)]^{p /(p-1)}-\Gamma(1+1 / p)<0 \\
\lim _{x \rightarrow \infty} S_{p}(x) & =0 \quad \text { and } \quad \lim _{x \rightarrow \infty} e^{x^{p}} \frac{\partial}{\partial x} S_{p}(x)=-\infty
\end{aligned}
$$

we conclude

$$
S_{p}(x)<0 \text { for all sufficiently small } x>0
$$

and

$$
S_{p}(x)>0 \quad \text { for all sufficiently large } x .
$$

Hence, for small $x>0$ the bounds for $\int_{x}^{\infty} e^{-t^{p}} d t(p>1)$ which are given in (2.6) are better than those presented in (1.3), whereas for large values of x the opposite is true.

Next, we compare the bounds for the exponential integral $E_{1}(x)$. First, we show that for all $x>0$ the upper bound given in (1.4) is better than the upper bound given in (2.7). This means, we have to prove that

$$
\begin{equation*}
e^{-x} \log (1+1 / x)<-\log \left(1-e^{-x}\right) \tag{3.1}
\end{equation*}
$$

for all $x>0$. Using the extended Bernoulli inequality

$$
(1+z)^{t} \geq 1+t z \quad(t>1 ; z>-1)
$$

(see [4, p. 34]), and the elementary inequality $e^{t}>1+t(t \neq 0)$, we obtain for $x>0$:

$$
\left(1+\frac{1}{e^{x}-1}\right)^{e^{x}} \geq 1+\frac{e^{x}}{e^{x}-1}=1+\frac{1}{1-e^{-x}}>1+\frac{1}{x}
$$

which leads immediately to (3.1).
Finally, we compare the lower bounds for $E_{1}(x)$ given in (2.7) and (1.4). Let

$$
T(x)=\frac{e^{-x}}{2} \log (1+2 / x)+\log \left(1-e^{-a x}\right)
$$

with $a=e^{C}$. Since $\lim _{x \rightarrow 0} T(x)=-\infty$, we obtain $T(x)<0$ for all sufficiently small x. And, from

$$
\lim _{x \rightarrow \infty} T(x)=0 \quad \text { and } \quad \lim _{x \rightarrow \infty} e^{a x} \frac{d}{d x} T(x)=-\infty
$$

we conclude that $T(x)>0$ for all sufficiently large x. Thus, for small $x>0$ the lower bound for $E_{1}(x)$ which is given in (2.7) is better than the bound given in (1.4), while for large values of x the latter is better.

Acknowledgement

I thank the referee for helpful comments.

References

1. J. T. Chu, On bounds for the normal integral, Biometrika 42 (1955), 263-265. MR 16:838f
2. G. M. Fichtenholz, Differential- und Integralrechnung, II, Dt. Verlag Wissensch., Berlin, 1979. MR 80f:26001
3. W. Gautschi, Some elementary inequalities relating to the gamma and incomplete gamma function, J. Math. Phys. 38 (1959), 77-81. MR 21:2067
4. D. S. Mitrinović, Analytic inequalities, Springer-Verlag, New York, 1970. MR 43:448

Morsbacher Str. 10, 51545 Waldbröl, Germany

[^0]: Received by the editor May 10, 1995 and, in revised form, April 5, 1996.
 1991 Mathematics Subject Classification. Primary 33B20; Secondary 26D07, 26D15.
 Key words and phrases. Incomplete gamma function, exponential integral, inequalities.

