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ON INTEGER CHEBYSHEV POLYNOMIALS

LAURENT HABSIEGER AND BRUNO SALVY

Abstract. We are concerned with the problem of minimizing the supremum
norm on [0, 1] of a nonzero polynomial of degree at most n with integer coeffi-
cients. We use the structure of such polynomials to derive an efficient algorithm
for computing them. We give a table of these polynomials for degree up to 75
and use a value from this table to answer an open problem due to P. Borwein
and T. Erdélyi and improve a lower bound due to Flammang et al.

1. Introduction

Let dn denote the lowest common multiple of 1, 2, . . . , n. The prime number
theorem may be stated as

lim
n→∞

log(dn)

n
= 1 .

Let Zn[X ] be the set of polynomials of degree less than or equal to n with integral
coefficients, and let I be the function that maps a polynomial P (X) onto ∫10 P (x) dx.
It is easy to see that

I (Zn−1[X ]) =
Z
dn
.(1)

Nair [Nai82] used this property to show that dn ≥ 2n for n ≥ 9, by considering
the polynomial Xn(1−X)n. This method may be refined as follows. Assume that
P (X) is a polynomial of degree k > 0 with integral coefficients and such that

‖P‖∞ := max
t∈[0,1]

|P (t)|

is small. Since P is non-zero, we have I(P 2n) > 0, for any nonnegative integer n.

By (1), this implies the inequality d2kn+1 ≥ ‖P‖−2n
∞ from which we deduce

lim inf
n→∞

log(dn)

n
≥ − log ‖P‖∞

k
.

This motivates the study of the polynomials Pk ∈ Zk[X ] and the quantities Ck such
that

‖Pk‖∞ = min
P∈Zk[X]\{0}

‖P‖∞ , and Ck = −1

k
log ‖Pk‖∞ ,(2)

for positive integers k. According to [BE95], the polynomials Pk are called integer
Chebyshev polynomials in the interval [0, 1]. In [Ber88] these polynomials are also
called polynomials of minimal diophantic deviation from zero.
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Much is known about these polynomials and their asymptotic structure. It was
proved by Snirelman (see [Ber67]) that the sequence (Ck)k∈N∗ converges to a limit
C; Borwein and Erdélyi [BE95] showed that C ∈ (0.8586616, 0.8657719); and the
lower bound was improved by Flammang to 0.8591282 [Fla95, FRS95]. Therefore
one cannot prove the prime number theorem in this way. However the problem of
finding the integer Chebyshev polynomials in the interval [0, 1] is interesting in itself.
(See [BE95, Mon94] and the references therein. In particular, Borwein and Erdélyi
state in [BE95] that “Even computing low-degree examples is complicated.”)

In this paper, we first prove two lemmas that halve the degree of the polyno-
mials we need to look for. This step enables us to compute polynomials of larger
degree but we cannot guarantee to find them all anymore. We then describe sev-
eral techniques to derive an efficient algorithm for computing these polynomials for
moderate degree. We give a table of these polynomials for degree up to 75 and use
a value from this table (P70) to answer an open problem from [BE95] and improve
the lower bound on C.

2. Structure of the polynomials

The set

Ek = {P ∈ Zk[X ] : P (1−X) = (−1)kP (X)}
is related to our problem by the following two lemmas.

Lemma 1. For any nonnegative integer k, we have

E2k = Zk[X(1−X)] and E2k+1 = (1− 2X)Zk[X(1−X)] .

Proof. We first show by induction on k that E2k = Zk[X(1−X)]. The case k = 0
is trivial: E0 = Z = Z0[X(1 − X)]. Let k be a positive integer and let P be in
E2k. The polynomial P (X)− P (0) vanishes when X equals 0, and when X equals

1, by symmetry. Therefore the quotient Q(X) = P (X)−P (0)
X(1−X) is a polynomial in X

of degree at most 2k − 2. Besides, the polynomial Q belongs to E2k−2. Applying
the induction hypothesis to Q then gives the desired result for P .

If P belongs to E2k+1, we have P (1/2) = −P (1/2) = 0, which shows that 1−2X
divides P (X). The polynomial Q(X) = P (X)/(1− 2X) then belongs to E2k and
we can use the first part to complete the proof of the lemma.

Lemma 2. For any positive integer k, there exists an element F of degree k in Ek
for which

Ck = −1

k
log ‖F‖∞ .

Proof. Let k be a positive integer and P a polynomial of degree less than or equal
to k, with integral coefficients such that Ck = − log ‖P‖∞ /k. Let us define two
polynomials Q1 and Q2 with integral coefficients by

Q1(X) = XP (X) + (−1)k(1−X)P (1−X),(3)

Q2(X) = (1−X)P (X) + (−1)kXP (1−X).(4)

By construction, we have Qi(X) = (−1)kQi(1−X), for i = 1, 2. For any element
t in [0, 1], notice that

|Qi(t)| ≤ t ‖P‖∞ + (1− t) ‖P‖∞ = ‖P‖∞ ,
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which implies that ‖Qi‖∞ ≤ ‖P‖∞, for i = 1, 2.
At least one of the polynomials Qi is non-zero, since otherwise P (X) would be

solution of a linear system with determinant (−1)k(2X − 1) 6= 0, which would
imply P = 0. We then take F = Qi to complete the proof of the lemma.

3. Computation of minimal polynomials

We now describe the techniques we use to compute a polynomial Pk of degree k
satisfying (2) for k up to 75. The outline of the algorithm is as follows:

1. Find a good upper bound for ‖Pk‖∞;
2. Use this bound to deduce polynomials that are necessarily factors of Pk;
3. Perform an exhaustive search for the missing factors.

We now review these stages in detail.

3.1. First upper bound. A good bound is given by

ck = min
0<p<k

‖PpPk−p‖∞ .

For 56 out of the first 75 polynomials, ck turns out to be optimal, which means
that a minimal polynomial of degree k has been found. However, we do not have
this information a priori.

3.2. Bounds and factors. The second stage of the algorithm is iterative. Each
step attempts to prove the existence of a factor of Pk starting from ck and a known
factor F of Pk. Initially, F = 1 if k is even and F = 2X − 1 otherwise. By
Lemmas 1 and 2, we concentrate on finding factors of a polynomial G ∈ Z[X ], such
that Pk(X) = F (X)G(X(1−X)). We denote by g the degree of G.

Since |Pk(x)| is bounded by ck on [0, 1], it follows that for all x ∈ [0, 1/4],

|G(x)| · |F (u(x))| ≤ ck, with u(x) =
1−
√

1− 4x

2
.(5)

As G has integer coefficients, this inequality can often be used to prove the existence
of factors of the form qX−p (p and q integers, 0 ≤ p/q ≤ 1/4) when F (u(p/q)) 6= 0,
for then it is sufficient to check that

ck <
|F (u(p/q))|

qg
,

which implies qg|G(p/q)| < 1. This technique extends to multiple factors via
Markov’s inequality on the r-th derivative of any polynomial P of degree n with
real coefficients:

max
a≤x≤b

|P (r)(x)| ≤ 2r

(b− a)r
n2(n2 − 12) · · · (n2 − (r − 1)2)

(2r − 1)!!
max
a≤x≤b

|P (x)|,

where (2i+ 1)!! = 1 · 3 · 5 · · · (2i+ 1).
In practice, we use these bounds with p/q ∈ {1/4, 1/5} to find factors (4X−1)a,

(5X − 1)b of G, corresponding to factors (2X − 1)2a, (5X2 − 5X + 1)b of
the polynomial Pk. This technique also applies to p/q = 0, yielding factors
Xc(1−X)c of Pk, but we rather use another bound derived from [BE95]. If Pk(X) =
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Xk−pQ(X) with Q(0) 6= 0, then

|Q(0)| ≤
√

2p+ 1

(
k + p+ 1

k − p

)
ck.

This yields factors Xc(1−X)c by Lemmas 1 and 2.
The advantage of the bounds above is that their computation can be performed

rather efficiently. However, they generally fail to yield all the factors of Pk. One
reason for this is that they do not really take into account the known factor F ,
except for its value at u(p/q). To get tighter bounds on the value of G at a given x,
we then turn to Lagrange interpolation. If x0, . . . , xg are g + 1 distinct points
in [0, 1/4], then

G(x) =

g∑
i=0

G(xi)
∏
j 6=i

x− xj
xi − xj

.

If the points xj are chosen so that F (u(xj)) 6= 0 for j = 0, . . . , g, it follows that

|G(x)| ≤ ck
g∑
i=0

1

|F (u(xi))|
∏
j 6=i

∣∣∣∣ x− xjxi − xj

∣∣∣∣.(6)

This gives a bound on |G(x)| for any x ∈ C, which can be further improved by
finding a set {x0, . . . , xg} which minimizes the right-hand side of (6). It turns out
that it is not necessary to spend much time finding a global minimum, but that a
few iterations of an optimizing scheme produce excellent results.

More generally, bounds on values of the polynomial help find factors of G of
any degree. If A(X) = a0X

n + · · · + an is an irreducible polynomial with integer
coefficients, a necessary and sufficient condition for A to be a factor of G is that the
resultant of A and G be zero. Since this resultant is an integer, denoting α1, . . . , αn
the roots of A, this condition is equivalent to

|a0|g|G(α1)| · · · |G(αn)| < 1.(7)

Thus for each irreducible polynomialA(X) such that A(X(1−X)) occurs as a factor
of one of the Pp’s, p < k, we compute its roots α1, . . . , αn numerically and bound
the left-hand side of (7) using Lagrange interpolation as above for each |G(αi)|. In
practice, this works well for A(X) = 29X2 − 11X + 1 which occurs frequently.

During this stage of the algorithm, every time a factor is found, F and g are
updated, leading to better estimates in the inequalities above, and the whole process
is started over again, until no more factors are found.

3.3. Exhaustive search. For 25 out of the first 75 polynomials, the quest for
factors described above is sufficient to determine all the factors of Pk. In the other
cases, we still have to determine a missing factor. By plugging values of x in (5),
we get linear inequalities satisfied by the coefficients of the factor G. Sufficiently
many of these inequalities define a polyhedron whose interior integer points we have
to determine. We have not found any reference to an efficient algorithm for doing
so (except [KNA94] in dimension 2).

We solve this problem by using a simplex method to compute bounds on each
coordinate. Then if the size of the bounding polyrectangle is not too large, we
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check each of its points to see whether it belongs to the polyhedron. For larger
polyrectangles, we select the variable with least variation and apply recursively
the same technique for each of its possible values. Empirically, it appears that it
is better to compute the coefficients of the reciprocal polynomials in the basis 1,
(X−4), (X−4)(X−5), . . . instead of the coefficients of the polynomials themselves.

4. A new factor and its consequences

Table 1 shows the first 75 integer Chebyshev polynomials. For each degree we
give only one polynomial, even when several exist. The notations are

A1 = X(1−X), A2 = 1− 2X, A3 = 5X2 − 5X + 1,

A4 = 6X2 − 6X + 1, A5 = 29X4 − 58X3 + 40X2 − 11X + 1,

A6 = (13X3 − 20X2 + 9X − 1)(13X3 − 19X2 + 8X − 1),

A7 = (31X4 − 63X3 + 44X2 − 12X + 1)(31X4 − 61X3 + 41X2 − 11X + 1),

A8 = 4921X10 − 24605X9 + 53804X8− 67586X7 + 53866X6

−28388X5 + 9995X4 − 2317X3 + 338X2 − 28X + 1.

When expressed in the variable u = X(1−X), these polynomials become

A1 = u, A2
2 = 4u− 1, A3 = 5u− 1, A4 = 6u− 1, A5 = 29u2 − 11u+ 1,

A6 = 169u3 − 94u2 + 17u− 1, A7 = 961u4 − 712u3 + 194u2 − 23u+ 1,

A8 = 4921u5 − 4594u4 + 1697u3 − 310u2 + 28u− 1.

Almost all these factors were already known to occur in integer Chebyshev poly-
nomials. The most surprising result is the factor A8 which divides P70. This factor
gives a negative answer to the following open problem from [BE95]:

Do the integer Chebyshev polynomials on [0, 1] have all their zeros
in [0, 1]?

The polynomial P70 has four non-real zeros. The derivative of A8 however has all
its zeros in [0, 1].

The factor A8 can also be used to improve the bound on C. Following the lines
of [BE95], we use a simplex method to compute α1, . . . , α10 and c such that: the
system

10∑
i=1

αi log |Ai(xj)| ≤ c, j = 1, . . . , n,

is satisfied; c is minimal; the αi’s are nonnegative and constrained by

10∑
i=1

αi deg(Ai) = 1;

the polynomial A9 is taken from [BE95]:

941[X(1−X)]4 − 703[X(1−X)]3 + 193[X(1−X)]2 − 23X(1−X) + 1;
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Table 1. Integer Chebyshev polynomials of degree up to 75

k Ck Polynomial k Ck Polynomial
0 −∞ 1 38 .8400137109 A14

1 A
6
2A

2
3

1 0 A2 39 .8488877225 A13
1 A

5
2A

2
3A5

2 .6931471805 A1 40 .8404640658 A13
1 A

6
2A

2
3A5

3 .7803552046 A1A2 41 .8465081502 A14
1 A

5
2A

2
3A5

4 .6931471805 A2
1 42 .8440344532 A14

1 A
6
2A

2
3A5

5 .8047189562 A2
1A2 43 .8449879864 A14

1 A
5
2A

3
3A5

6 .7803552047 A2
1A

2
2 44 .8455791880 A15

1 A
6
2A

2
3A5

7 .7991843140 A3
1A2 45 .8398268629 A15

1 A
7
2A

2
3A5

8 .8010279578 A3
1A

2
2 46 .8468722310 A16

1 A
6
2A

2
3A5

9 .8316158874 A3
1A2A3 47 .8430715282 A15

1 A
5
2A

2
3A

2
5

10 .8047189567 A4
1A

2
2 48 .8491690644 A16

1 A
6
2A

3
3A5

11 .8109727374 A4
1A2A3 49 .8457300825 A16

1 A
7
2A

2
3A4A5

12 .8235466006 A4
1A

2
2A3 50 .8448129844 A16

1 A
6
2A

2
3A

2
5

13 .8090328223 A4
1A2A

2
3 51 .8473273518 A17

1 A
7
2A

3
3A5

14 .8405593722 A5
1A

2
2A3 52 .8464778545 A17

1 A
8
2A

2
3A4A5

15 .8163003367 A5
1A

3
2A3 53 .8494236563 A18

1 A
7
2A

3
3A5

16 .8268434981 A6
1A

2
2A3 54 .8441650118 A18

1 A
8
2A

3
3A5

17 .8311026953 A6
1A

3
2A3 55 .8469319238 A19

1 A
7
2A

3
3A5

18 .8316158595 A6
1A

2
2A

2
3 56 .8457325337 A19

1 A
8
2A

3
3A5

19 .8400137111 A7
1A

3
2A3 57 .8464270507 A19

1 A
7
2A

4
3A5

20 .8288579250 A6
1A

2
2A3A5 58 .8471145416 A20

1 A
8
2A

3
3A5

21 .8303936176 A8
1A

3
2A3 59 .8468162432 A19

1 A
7
2A

3
3A

2
5

22 .8322820522 A8
1A

4
2A3 60 .8483301990 A21

1 A
8
2A

3
3A5

23 .8385504326 A8
1A

3
2A

2
3 61 .8462840938 A20

1 A
7
2A

3
3A

2
5

24 .8378960676 A9
1A

4
2A3 62 .8488367522 A21

1 A
8
2A

4
3A5

25 .8448129844 A8
1A

3
2A3A5 63 .8463191193 A20

1 A
7
2A

3
3A5A6

26 .8338173096 A9
1A

4
2A

2
3 64 .8477264811 A21

1 A
8
2A

3
3A

2
5

27 .8434645771 A9
1A

3
2A3A5 65 .8478630743 A22

1 A
9
2A

4
3A5

28 .8405595853 A10
1 A

4
2A

2
3 66 .8489400289 A22

1 A
10
2 A

3
3A4A5

29 .8356309576 A11
1 A

5
2A3 67 .8492102067 A23

1 A
9
2A

4
3A5

30 .8398858116 A10
1 A

4
2A3A5 68 .8468222183 A23

1 A
10
2 A

3
3A4A5

31 .8358028746 A11
1 A

5
2A

2
3 69 .8471956204 A22

1 A
9
2A

3
3A5A6

32 .8412151163 A11
1 A

4
2A3A5 70 .8467991413 A22

1 A
8
2A

2
3A5A8

33 .8406807538 A12
1 A

5
2A

2
3 71 .8472585205 A24

1 A
11
2 A

3
3A4A5

34 .8461748302 A11
1 A

4
2A

2
3A5 72 .8499040059 A23

1 A
8
2A

4
3A5A6

35 .8388555719 A11
1 A

5
2A3A4A5 73 .8499191960 A24

1 A
9
2A

4
3A

2
5

36 .8409740145 A12
1 A

4
2A

2
3A5 74 .8486911214 A23

1 A
8
2A

4
3A5A7

37 .8431610719 A12
1 A

5
2A

2
3A5 75 .8487246297 A24

1 A
9
2A

4
3A5A6

the polynomial A10 is

34X4 − 68X3 + 46X2 − 12X + 1,

which was found by considering polynomials with small coefficients in the ba-
sis 1, (X − 4), (X − 4)(X − 5), . . . ; and the xj ’s are (numerous) points in [0, 1/2].
After further optimization starting from the result of the simplex method, we obtain
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(α1, . . . , α10)

= (.3185482277, .1173845553, .0387135327, .0015952503, .0151308163,

.0056051138, .0023845110, .0004709314, .0057932925, .0001539332).

From this computation we deduce a polynomial

Q = A3185482277
1 ·A1173845553

2 · A387135327
3 · A15952503

4

· A151308163
5 · A56051138

6 ·A23845110
7 ·A4709314

8 ·A57932925
9 ·A1539332

10

of degree d = 1010 − 5 such that

−1

d
log ‖Q‖∞ ≈ 0.85925028052498171737548368.

Then since ‖Pnd‖∞ ≤ ‖Qn‖∞, we get the following improvement on the known
lower bound 0.8591282.

Theorem 1. The constant C satisfies

C > 0.85925028.

5. Conclusion

All the computations have been performed using the computer algebra system
Maple. By implementing the same techniques in C, one would probably find at
most ten more polynomials, at the expense of a much longer programming time.
However, it is clearly much more effective to look for better algorithms.

Currently, the bottleneck of the computation is the last part, which is hopeless
if the degree of the missing factor is too high (our limit is 24, corresponding to
thirteen undeterminate coefficients in X(1 − X)). Sophisticated techniques from
integer linear programming might help.

Also, it is crucial to find as many factors as possible before this stage. In practice,
we almost always know what the best polynomial is, the problem lies in proving it.
In particular, in almost all cases, the use of bounds as described in this paper is
not sufficient to determine the maximal exponent of the factor X(1−X). Further
work on this part should help.
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