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A PRIORI ERROR ESTIMATES FOR NUMERICAL METHODS

FOR SCALAR CONSERVATION LAWS. PART II:

FLUX-SPLITTING MONOTONE SCHEMES ON IRREGULAR

CARTESIAN GRIDS

BERNARDO COCKBURN AND PIERRE-ALAIN GREMAUD

Abstract. This paper is the second of a series in which a general theory of a
priori error estimates for scalar conservation laws is constructed. In this pa-
per, we focus on how the lack of consistency introduced by the nonuniformity
of the grids influences the convergence of flux-splitting monotone schemes to
the entropy solution. We obtain the optimal rate of convergence of (∆x)1/2 in
L∞(L1) for consistent schemes in arbitrary grids without the use of any regu-
larity property of the approximate solution. We then extend this result to less
consistent schemes, called p−consistent schemes, and prove that they converge
to the entropy solution with the rate of (∆x)min{1/2,p} in L∞(L1); again, no

regularity property of the approximate solution is used. Finally, we propose a
new explanation of the fact that even inconsistent schemes converge with the
rate of (∆x)1/2 in L∞(L1). We show that this well-known supraconvergence
phenomenon takes place because the consistency of the numerical flux and the
fact that the scheme is written in conservation form allows the regularity prop-
erties of its approximate solution (total variation boundedness) to compensate
for its lack of consistency; the nonlinear nature of the problem does not play
any role in this mechanism. All the above results hold in the multidimensional
case, provided the grids are Cartesian products of one-dimensional nonuniform
grids.

1. Introduction

This is the second of a series of papers in which we develop a theory of a priori
error estimates, that is, estimates given solely in terms on the exact solution, for
numerical methods for the scalar conservation law [11]

vt +∇ · f(v) = 0, in (0, T )× Rd,(1.1a)

v(0) = v0, on Rd.(1.1b)

In the first paper of this series [4], we constructed a general approach aimed at
obtaining a priori error estimates for numerical methods for scalar conservation laws
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by a suitable modification of Kuznetsov approximation theory [12]. We illustrated
the approach by establishing optimal error estimates for the Engquist-Osher scheme
[5] on one-dimensional uniform grids without using any smoothness property of the
approximate solution generated by the scheme; in previous work, [2], [3], [13]–[16],
[18], [19], [20], [22], [24], [26], regularity properties of the approximate solution were
always used (see also [23]). The extension of this result to the case of nonuniform
grids is by no means trivial since the nonuniformity of the grids introduces a “loss”
of consistency (see, for example, Hoffman [9], Pike [21], and Turkel [25]) which,
nevertheless, does not deteriorate the rate of convergence of the global error. This
paper is devoted to the study of this supraconvergence phenomenon, that is, to the
study of the relation between the part of the truncation error generated by the lack
of consistency of the scheme and the global error.

Supraconvergence of numerical schemes has been analyzed in a variety of cases.
For example, Manteuffel and White [17] studied supraconvergence for linear, second-
order boundary value problems, Kreiss et al. [11] for high-order linear differential
equations, B. Wendroff and A.B. White [27], [28] for nonlinear hyperbolic systems,
Garćıa-Archilla and Sanz-Serna [7] for third-order finite differences, and Garćıa-
Archilla [6] for the Korteweg-de Vries equation. To illustrate this supraconvergence
phenomenon in our setting, let us consider the standard Engquist-Osher scheme on
nonuniform grids, i.e.,

(un+1
j − unj )/∆t+ (fEO(unj , u

n
j+1)− fEO(unj−1, u

n
j ))/∆j = 0, n ∈ N, j ∈ Z,

with numerical flux fEO(a, b) = f+(a) + f−(b), f+ and f− being respectively the
increasing and decreasing part of f . As usual, ∆j = xj+1/2−xj−1/2 denotes the cell
centered around the node xj . Assuming that the solution v is smooth, the (formal)

truncation error is given by TEf(tn, xj) = TEfvisc + TEfcons + TEfh.o.t, where

TEfvisc =
∆t

2
∂x(f ′

2
(vnj )∂xv

n
j )−

∆2
j+1/2 + ∆2

j−1/2

4∆j
∂x(|f ′(vnj )|∂xvnj )

+
∆2
j+1/2 −∆2

j−1/2

4∆j
∂x(f ′(vnj )∂xv

n
j ),

TEfcons = (
∆j+1/2 + ∆j−1/2

2∆j
− 1) f ′(vnj )∂xv

n
j +
−∆j+1/2 + ∆j−1/2

2∆j
|f ′(vnj )| ∂xvnj ,

TEfh.o.t = O(
∆3
j+1/2

∆j
) +O(

∆3
j−1/2

∆j
) +O(∆t2),

where vnj stands for v(tn, xj) and ∆j+1/2 = (∆j + ∆j+1)/2. The above terms
correspond respectively to the numerical viscosity of the scheme, to the consistency
of the scheme, and to some “high-order” terms; note that the term TEfcons vanishes
if uniform grids are considered. It is easy to see that the (formal) truncation error
tends to zero upon refinement if ∆j varies smoothly with respect to j. Convergence
can thus reasonably be expected in this case. On the other hand, if nonsmooth
grids are considered, the scheme is not consistent. Indeed if, for instance, the grids
. . . ,∆x/2,∆x,∆x/2,∆x, . . . are considered, the term TEfcons does not tend to zero,
and thus neither does the (formal) truncation error TEf(tn, xj).

The following numerical example shows that the inconsistency of the scheme on
rough grids does not prevent it from converging at the optimal rate. In Figure 1,
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Figure 1. L1-error vs. ∆x for a continuous (top), and discontin-
uous (bottom) solution, on random grids

we display the performance of the Engquist-Osher scheme on the classical example
of the Burgers’ equation with periodic boundary conditions and a sinusoidal initial
condition (see [8] for details).

About 400 randomly generated—and thus non smooth—grids were considered.
The global L1-error at the final time is represented with respect to ∆x, size of the
largest element. In Figure 1 (top), the exact solution is smooth; the convergence
rate is one. In Figure 1 (bottom), the exact solution exhibits a discontinuity but,
interestingly enough, the scheme converges without any loss in the numerical rate
of convergence. This shows that the (formal) truncation error is a poor indicator
of the quality of a numerical algorithm.

In this paper, we obtain the proper definition of the truncation error and show
how to use it (i) to obtain a priori error estimates for flux-splitting monotone
schemes in nonuniform grids, and (ii) to explain the supraconvergence phenome-
non. Although Sanders [22] did establish an optimal error estimate for monotone
schemes on nonuniform grids, his analysis relied on several regularity properties
of the approximate solution, in particular total variation boundedness. This is a
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point of significant importance, if one recalls that even the simplest schemes, the
monotone schemes, have not been proven to generate approximate solutions with
this kind of regularity, when defined on general triangulations. In this paper, to
obtain our a priori error estimates, we do not use any regularity property of the
approximate solution; as a consequence, we are forced to use suitable definitions
of consistency. Thus, we obtain the optimal rate of convergence of (∆x)1/2 in
L∞(L1), for consistent schemes in arbitrary grids. We also consider a class of nu-
merical schemes of varying degree of consistency called p−consistent and prove that
they converge to the entropy solution with the rate of (∆x)min{1/2,p} in L∞(L1).
In both cases, no regularity property of the approximate solution is used.

To explain the supraconvergence of the numerical schemes under consideration
(which was proven by Sanders [22]) we allow ourselves to use the total variation
boundedness of the approximate solution but only to estimate the term that appears
in the proper truncation error due to the inconsistency introduced by the nonuni-
formity of the grids. We show that the optimal rate of convergence of (∆x)1/2 in
L∞(L1) can be obtained, even for inconsistent schemes, because the consistency
of the numerical flux and the fact that the scheme is written in conservation form
allow the regularity properties of the numerical approximation to compensate for
the lack of consistency of the scheme; the nonlinearity of the problem does not play
any role in this mechanism. To the knowledge of the authors, this is the first rigor-
ous explanation of a supraconvergence phenomenon for hyperbolic problems with
low regularity; the study of B. Wendroff and A.B. White [27], [28] on hyperbolic
systems is formal and applies to smooth solutions only.

Finally, we strongly emphasize that, although all our results are stated and
proved in a one-dimensional framework, they can be immediately extended to the
case of multidimensional problems, provided the grids are Cartesian products of
nonuniform one-dimensional grids. The case of time-varying meshes will not be
considered in this paper since it would add a great deal of complexity to the already
very technical analysis presented. To the authors’ knowledge, no such result is
available in the present context.

The paper is organized as follows. In §2, the numerical schemes under considera-
tion are presented, related technical assumptions are discussed, and the main results
are stated and discussed. In §3, we give a proof of our main result. Concluding
remarks are offered in §4.

2. The numerical schemes and the main results

a. The numerical schemes. Given a partition of R+, {tn = n∆t}n∈N, and a
grid or partition of R, { xj+1/2 }j∈Z, we define an approximation u to the entropy
solution v of (1.1) (with d = 1) as the piecewise-constant function

u(t, x) =unj , for (t, x) ∈ [tn, tn+1)× (xj−1/2, xj+1/2),(2.1)

constructed as follows. At t = 0, the degrees of freedom of u are given by

u0
j =

1

∆j

∫ xj+1/2

xj−1/2

u0(s) ds.(2.2a)

The remaining degrees of freedom are defined by the following flux-splitting scheme
in conservation form:

(un+1
j − unj )/∆t+ (f nj+1/2 − f nj−1/2)/∆j = 0, n ∈ N, j ∈ Z,(2.2b)
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where ∆j = xj+1/2 − xj−1/2 and the numerical flux f nj+1/2 = fj+1/2(unj , u
n
j+1) has

the form

f nj+1/2 =f ncent,j+1/2 − f nvisc,j+1/2,(2.3a)

with

f ncent,j+1/2 =
aj+1/2

∆j+1/2
f(unj ) +

bj+1/2

∆j+1/2
f(unj+1),(2.3b)

and

f nvisc,j+1/2 =
αj+1/2

∆j+1/2

(
N(unj+1)−N(unj )

)
,(2.3c)

where ∆j+1/2 = (∆j + ∆j+1)/2. We assume that the flux f nj+1/2 is consistent with

the nonlinearity f , i.e., that fj+1/2(u, u) = f(u); this is equivalent to assume

aj+1/2 + bj+1/2 = ∆j+1/2.(2.3d)

We also require

max{aj+1/2, bj+1/2, 0} ≤ αj+1/2 ≤ ∆x ≡ sup
j∈Z

∆j ,(2.3e)

and

N ′(s) ≥ | f ′(s) |.(2.3f)

Two standard examples of viscosity N are N(u) =
∫ u | f ′(s) | ds (Engquist-Osher

flux) and N(u) = Cu (Lax-Friedrichs flux), where C is chosen as to satisfy (2.3f).
As is well-known, condition (2.3f) ensures the monotonicity of the scheme under a
suitable condition on the size of ∆t which in our case turns out to be the following:

∆t

∆j
‖N ′(u) ‖ ≤ cfl(j), j ∈ Z,(2.4a)

where

cfl−1(j) =
∣∣ aj+1/2

∆j+1/2
−

bj−1/2

∆j−1/2

∣∣+
( αj+1/2

∆j+1/2
+
αj−1/2

∆j−1/2

)
,(2.4b)

‖N ′(u) ‖ = sup
t∈(0,T )
x∈R

N ′(u(t, x)).(2.4c)

Note that (for the Engquist-Osher scheme, for example) the above stability condi-
tion (2.4) boils down to the usual cfl(j) ≡ 1 in the case of uniform grids. It should
also be noted that (2.4) is essentially a condition of the type ∆t ≤ k infj∈Z∆j ,
where k is a positive constant independent of the grid. It is therefore the smallest
element ∆0 which limits the size of the time step ∆t. Although customary, such a
condition might be unreasonably stringent for most of the elements. An interesting
alternative is discussed in [1].
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b. Consistency and a priori error estimates. Before stating our error esti-
mates, we need to elaborate on the notion of consistency of the schemes.

The (formal) truncation error TEf(tn, xj) for the schemes under consideration

can be split into three terms, TEfvisc + TEfcons + TEfh.o.t., defined as follows:

TEfvisc =
∆t

2
∂x(f ′

2
(vnj )∂xv

n
j )−

∆j−1/2 αj−1/2 + ∆j+1/2 αj+1/2

2∆j
∂x(N ′(vnj )∂xv

n
j )

+
bj+1/2 ∆j+1/2 − aj−1/2 ∆j−1/2

2∆j
∂x(f ′(vnj )∂xv

n
j ),

TEfcons =
bj+1/2 + aj−1/2 −∆j

∆j
∂xf(vnj )−

αj+1/2 − αj−1/2

∆j
∂xN(vnj ),

TEfh.o.t. =O(∆t2) + rj O(∆x2),

where rj = max{∆j−1

∆j
,

∆j+1

∆j
}. Note that we can use the consistency of the numerical

flux (2.3) to write

TEfcons = −
δ̂j+1/2 − δ̂j−1/2

∆j
∂xf(vnj )−

αj+1/2 − αj−1/2

∆j
∂xN(vnj ),

where

δ̂j+1/2 = aj+1/2 −
1

2
∆j+1.

Although it is not clear at this point, it is this structure of the consistency error
TEfcons which allows the phenomenon of supraconvergence to take place. What is

clear, however, is that the consistency error is identically zero if both δ̂j+1/2 and
αj+1/2 are constant. It is thus reasonable to measure the degree of consistency of

the scheme by some seminorm related to the variation of δ̂ and α.
Our analysis shows that the correct quantity to consider is not δ̂j+1/2 but

δj+1/2 = aj+1/2 −
1

2
∆j ,(2.5)

and that the consistency of the error should be measured with the following semi-
norm:

| ζ |var,1/2 = sup
x∈R

∑
|xj−x|≤(∆x)1/2 | ζj+1/2 − ζj−1/2 |

(∆x)1/2
.(2.6a)

This motivates the following concepts of consistency. We say that the scheme is
p−consistent with respect to the family of grids

{
{ xj+1/2 }j∈Z

}
∆x>0

if there are
two nonnegative constants Cδ and Cα such that

| δ |var,1/2 ≤ Cδ (∆x)p, |α |var,1/2 ≤ Cα (∆x)p.(2.6b)

If Cδ = Cα = 0, we say that the scheme is consistent. For example, for the one-
parameter family of schemes

aj+1/2 =
1

2

(
(1− θ)∆j + θ∆j+1

)
,

bj+1/2 =
1

2

(
(1− θ)∆j+1 + θ∆j

)
, αj+1/2 =

1

2
∆x,
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for θ ∈ [0, 1], we have δj+1/2 = θ (∆j+1 − ∆j)/2. Moreover, it is clear that the
schemes are consistent for θ = 0 regardless of the family of grids. For θ ∈ (0, 1],
these schemes are p−consistent if the grids are such that∑

|xj−x|≤(∆x)1/2

|∆j−1 − 2∆j + ∆j+1 | ≤ (∆x)1/2 · Cδ (∆x)p.

This property holds if the grids are p−smooth, that is, if there is a constant κ such
that

∣∣rh − 1
∣∣ ≤ κ∆xp, rh = sup

j∈Z

∆j±1

∆j
.(2.7)

Note that for 0−smooth grids like . . . ,∆x/2,∆x,∆x/2,∆x, . . . , the schemes above
are 0−consistent and clearly inconsistent, except for the scheme obtained with
θ = 0.

We are now ready to state our error estimate which, following [4], is expressed in
terms of the numerical viscosity associated to the scheme under consideration and
in terms of the measure of consistency introduced above.

Theorem 2.1. Let the Courant-Friedrichs-Levy condition (2.4) be satisfied. Let u
be the piecewise-constant solution given by the scheme (2.2) with coefficients satisfy-
ing (2.3), let v be the entropy solution, and set R(v0) = [infx∈R v0(x), supx∈R v0(x)].
Then

‖ u(tN)− v(tN ) ‖L1(R) ≤ 2 ‖ u0 − v0 ‖L1(R) + 8 | v0 |TV (R)

√
2tN ‖ νv ‖ (∆x)1/2

+ C | v0 |TV (R)

(
| δ |var,1/2 + |α |var,1/2

)
+ | v0 |TV (R) ( b1(∆x)3/4 + b2 ∆x ),

where ‖ νv ‖ = supj∈Z supw∈R(v0) νj(w) and the local viscosity coefficient νj is given
by

νj(w) =
1

2

∣∣∣∣( αj+1/2

∆x

∆j + 2∆j+1

3∆j
+
αj−1/2

∆x

∆j + 2∆j−1

3∆j

)
N ′(w)

+

(
aj+1/2

∆x

∆j + 2∆j+1

3∆j
−
bj−1/2

∆x

∆j + 2∆j−1

3∆j

)
f ′(w)− ∆t

∆x
(f ′(w))2

∣∣∣∣.
The constant C is given by

C = 4 ‖N ′(v) ‖ (tN +
√

2tN/‖ νv ‖ ) (1 + b0 (∆x)1/4),

and the constants b0, b1, and b2 are locally bounded functions that depend solely
on the quantities ‖ f ′(v) ‖∆t/∆x, ‖ f ′(v) ‖/‖ νv ‖, and {tN ‖ νv ‖}1/2 . Moreover, if
the entropy solution has a finite number of discontinuities on each compact set
of (0, T ) × R, we can take ‖ νv ‖ = supt∈(0,τ)

x∈R
νj(v(t, x − 0), v(t, x + 0)), where
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νj(v
−, v+) ≡ supu∈[v−∧v+,v−∨v+] |νj(u; v−, v+)| and

νj(u; v−, v+) =
1

2

{(
αj+1/2

∆j + 2∆j+1

3∆j
+ αj−1/2

∆j + 2∆j−1

3∆j

)
[N (v)]

[v]

+

(
aj+1/2

∆j + 2∆j+1

3∆j
− bj−1/2

∆j + 2∆j−1

3∆j

)
[F (v)]

[v]

−∆t
[F (v)]

[v]

[f(v)]

[v]

}
.

In the above expression, [v] = v+ − v−, [F (v)] =
∫ v+

v−
f ′(s) sgn(s − u) ds, and

[N (v)] =
∫ v+

v−
N ′(s) sgn(s− u) ds.

An immediate consequence of this result is the following.

Corollary 2.2 (p−consistent schemes). With the notation and under the as-
sumptions of Theorem 2.1, if the scheme is p−consistent, we have

‖ u(tN)− v(tN ) ‖L1(R) ≤ 2 ‖ u0 − v0 ‖L1(R) + 8 | v0 |TV (R)

√
2tN ‖ νv ‖ (∆x)1/2

+O((∆x)min{p,3/4}).

For consistent schemes, we have that δj+1/2 ≡ δ, αj+1/2 ≡ α, and we can write

νj(w) ≤
∣∣∣∣ α+ | δ |

∆x
N ′(w) − ∆t

2 ∆x
(f ′(w))2

∣∣∣∣ + Θ(w),

where

Θ(w) ≤
(

2

3

( α

∆x
+
| δ |
∆x

) ∣∣ rh − 1
∣∣+ ( 10

3
+

8

3

∣∣ rh − 1
∣∣) ∣∣ rh − 1

∣∣)N ′(w)

≤C N ′(w) (∆x)q ,

for q−smooth grids. Thus, Theorem 2.1 gives the following result.

Corollary 2.3 (Consistent schemes). With the notation and under the assump-
tions of Theorem 2.1, if the grids are q−smooth and if the scheme is consistent, we
have

‖ u(tN)− v(tN ) ‖L1(R) ≤ 2 ‖ u0 − v0 ‖L1(R) + 8 | v0 |TV (R)

√
2tN ‖ νv ‖ (∆x)1/2

+O((∆x)min{1/2+q,3/4}),

where

‖ νv ‖ = sup
w∈R(v0)

∣∣∣∣ α+ | δ |
∆x

N ′(w)− ∆t

2∆x
(f ′(w))2

∣∣∣∣.
Note that even for 0−smooth grids, the optimal rate of convergence ofO((∆x)1/2)

is achieved by the above schemes.

c. Sketch of the proof. In what follows, we give an overview of the proof of Theo-
rem 2.1 which is given in full detail in §3. We start with the following approximation
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inequality [4, Proposition 7.6]. If e(tn) denotes the error ‖ u(tn)−v(tn) ‖L1(R), then

e(tN ) ≤ 2 e(0) + 8
(
εx + εt‖f ′(v)‖

)
| v0 |TV (R) + 2 ‖ f ′(v) ‖ | v0 |TV (R) ∆t

+ 2 lim
w→χ

sup
1≤n≤N

{
E?div(u, v; tn)/W (tn)−Ediss(uh, v; tn)/W (tn)

}
,

where the so-called dual form E?div(u, v; tn) is, in this case, nothing but the trun-
cation error and the form Ediss(uh, v; tn) contains the information on the entropy
dissipation (or “hyperbolic coercivity”) of the numerical scheme. The third term
in the right-hand side reflects the fact that the scheme is first-order accurate in
time. The parameters εx and εt are auxiliary positive numbers that will be suitably
chosen after obtaining the estimates of the forms E?div(u, v; tn) and Ediss(uh, v; tn).
The functions ω, χ, and W are auxiliary functions to be precisely defined in §3.a.

Since the numerical schemes under consideration are monotone, it can be easily
proven that

−Ediss(uh, v; tN ) ≤ 0,

under the condition (2.4) on the size of ∆t.
To estimate the dual form E?div(u, v; tn), we first show that it is bounded by the

truncation error

E?div(u, v; tn) ≤TE(u, v; tn),

and then we obtain the corresponding estimate.
To illustrate the estimate of E?div(u, v; tn), let us consider that both the entropy

solution v and the “approximate solution” u are smooth. We also assume that the
functions a, b, δ, and α defining the coefficients of the numerical scheme are smooth
functions. In this case, the truncation error TE = TE(u, v;T ) can be written as
the sum of the following three terms

TEvisc =

∫ T

0

∫
R

∫ T

0

∫
R

∆xV (u, v;x′)ϕxx dx
′ dt′ dx dt,

TEcons =−
∫ T

0

∫
R

∫ T

0

∫
R

{
δx′(x

′)F (u, v) + αx′(x
′)N (u, v)

}
ϕx dx

′ dt′ dx dt,

TEh.o.t =

∫ T

0

∫
R

∫ T

0

∫
R

(∆t)2

6
F(u, v)ϕxxt dx

′ dt′ dx dt

+

∫ T

0

∫
R

∫ T

0

∫
R

{
P(x′)F (u, v) +Q(x′)N (u, v)

}
ϕxxx dx

′ dt′ dx dt,

where, in order to render as clear as possible the manipulations that will be per-
formed, we abbreviated v(t, x) by v, u(t′, x′) by u, and the auxiliary function
ϕ(t, x, t′, x′) by ϕ. The functions V , F , N and F are related to the numerical
viscosity coefficient

ν(w;x′) =
α(x′)

∆x
N ′(w) +

b(x′)− a(x′)

2 ∆x
f ′(w) − ∆t

2 ∆x
(f ′(w))2,
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and to the functions f and N as follows:

V (u, v;x′) =

∫ u

v

ν(s;x′)U ′(u− s) ds, F (u, v) =

∫ u

v

f ′(s)U ′(u− s) ds,

N (u, v) =

∫ u

v

N ′(s)U ′(u− s) ds, F(u, v) =

∫ u

v

(f ′(s))2 U ′(u− s) ds,

where U(w) = |w |. The functions P and Q satisfy

‖P ‖L∞(R), ‖Q‖L∞(R) ≤ (∆x)2/2.

Before estimating the truncation error TE, let us compare it with the (formal)
truncation error TEf , which is the sum of the following terms:

TEfvisc(t, x) =
1

2
∆t ∂x( f ′

2
(v(t, x)) ∂xv(t, x))− α(x) ∂xx(N(v(t, x)))

+
1

2
(b(x)− a(x)) ∂xx(f(v(t, x))),

TEfcons(t, x) = −
{
δx(x) ∂xf(v(t, x)) + αx(x) ∂xN(v(t, x))

}
,

TEfh.o.t. = O(∆t2) +O(∆x2).

We see that the definition of the (formal) truncation error TEf collapses when
v is a nonsmooth function. However, the truncation error TE remains defined
even if v and u are only bounded and measurable. Moreover, in the expression
of the truncation error TE, it is possible to integrate by parts very easily due
to the fact that the functions v = v(t, x) and u = u(t′, x′) are always evaluated
at different points; this key feature was introduced by Kružkov [11]. In order
to compensate for this “doubling of the variables,” the auxiliary function ϕ is
introduced and is defined to be an approximation of the product of the Dirac
delta functions with support {t = t′} and {x = x′} respectively; more precisely,
ϕ(t, x, t′, x′) = {w((t− t′)/εt)/εt} {η((x− x′)/εx)/εx}, where w and η are positive,
even, smooth functions of unit mass and support in [−1, 1].

We are now ready to estimate TE. To estimate TEvisc, we integrate by parts in
the variable x and use the definition of the function V (u, v;x′) to obtain

TEvisc =

∫ T

0

∫
R

∫ T

0

∫
R

∆x ν(v;x′) vx U
′(u− v)ϕx dx

′ dt′ dx dt

≤∆x ‖ νv ‖
∫ T

0

∫
R
| vx |

{∫ T

0

∫
R
|ϕx | dx′ dt′

}
dx dt

≤ 2C0

| η |TV (R)

εx
‖ νv ‖∆x,

where C0 = T |v0|TV (R)W (T ), and where W (s) is the antiderivative of w(s/εt)/εt,
since

∫ T

0

∫
R
|ϕx | dx′ dt′ dx dt ≤2

| η |TV (R)

εx
W (T ),

∫ T

0

∫
R
| vx | dx dt ≤ T |v0|TV (R).
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To estimate the consistency truncation error, TEcons, we integrate once again by
parts in the variable x and use the definitions of the functions F (u, v) and N (u, v):

TEcons =−
∫ T

0

∫
R

∫ T

0

∫
R

{
δx′(x

′)F (u, v) + αx′(x
′)N (u, v)

}
ϕx dx

′ dt′ dx dt

=−
∫ T

0

∫
R

∫ T

0

∫
R

{
δx′(x

′) f ′(v) + αx′(x
′)N ′(v)

}
U ′(u− v) vx ϕ dx

′ dt′ dx dt

≤
∫ T

0

∫
R
| f ′(v) | | vx |

{∫ T

0

∫
R
ϕ | δx′(x′) | dx′ dt′

}
dx dt

+

∫ T

0

∫
R
|N ′(v) | | vx |

{∫ T

0

∫
R
ϕ |αx′(x′) | dx′ dt′

}
dx dt

≤ 2C1

(
1 +

(∆x)1/2

εx

)
‖ η ‖L∞(R)

(
| δ |var,1/2 + |α |var,1/2

)
,

where C1 = C0 ‖N ′(v)‖, since∫ T

0

∫
R
ϕ | ζx′(x′) | dx′ dt′ ≤ 2 W (T )

(
1 +

(∆x)1/2

εx

)
‖ η ‖L∞(R) | ζ |var,1/2.

Finally, to estimate TEh.o.t, we integrate by parts in x, use the definitions of F (u, v),
N (u, v), and F and proceed as before to get

TEh.o.t ≤C1

{
(∆t)2 | η |TV (R)

εt εx
‖ f ′ ‖ + 2

(∆x)2 | η′ |TV (R)

ε2x

}
.

Now, we pick η such that:

| η |TV (R) = 1 + ε, | η′ |TV (R) = 2 + ε+ 1/ε, ‖ η ‖L∞(R) = (1 + ε)/2,

and insert the above estimates into the right-hand side of the approximation in-
equality. To prove Theorem 2.1, we simply have to minimize the right-hand side
of the approximation inequality with respect to the parameters εx, εt, and ε. It
turns out that the optimal parameters are εx = O((∆x)1/2), εt = O((∆x)3/4),
and ε = O((∆x)1/4). The estimates of the truncation errors then take the form

TEvisc(u, v;T )/W (T ) ≤C′0 (∆x)1/2,

TEcons(u, v;T )/W (T ) ≤C′1
(
| δ |var,1/2 + |α |var,1/2

)
,

TEh.o.t.(u, v;T )/W (T ) ≤C′2 (∆x)3/4,

where the constants C′i, i = 0, 1, 2, are independent of ∆x for ∆x small enough.

d. An explanation of the supraconvergence. To illustrate the idea that allows
the supraconvergence phenomenon to take place, we only need to show how to
exploit the structure of the term TEcons to obtain a better estimate. Since both
terms of TEcons are similar in structure, we concentrate only on the first:

Θ =−
∫ T

0

∫
R

∫ T

0

∫
R
δx′(x

′)F (u, v)ϕx dx
′ dt′ dx dt.

Note that if we do not want to use the variation of δ to estimate Θ, we can exploit
the fact that it is possible to integrate by parts, this time with respect to x′, to get
an estimate involving a bound on the L∞-norm of δ only. It is this structure of the
consistency error (which, as we saw in §2.a, is a reflection of the consistency of the
numerical flux and the conservativity of the scheme) which allows the phenomenon
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of supraconvergence to take place. The price to pay, however, is that we must give
up the restriction of not using regularity properties of the approximate solution u,
as we show next.

Thus, to estimate Θ, we integrate by parts in the variable x′ and use the definition
of the function F (u, v) to obtain

Θ =−
∫ T

0

∫
R

∫ T

0

∫
R
F (u, v)ϕx (δ(x′)− δ̄)x′ dx′ dt′ dx dt

=

∫ T

0

∫
R

∫ T

0

∫
R

{
U ′(u− v) f ′(u)ux′ϕx + F (u, v)ϕxx′

}{
δ(x′)− δ̄

}
dx′ dt′ dx dt

=

∫ T

0

∫
R

∫ T

0

∫
R
U ′(u− v)

{
f ′(u)ux′ϕx + f ′(v) vx ϕx′

}{
δ(x′)− δ̄

}
dx′ dt′ dx dt

≤
∫ T

0

∫
R
| f ′(u) | |ux′ |

{∫ T

0

∫
R
|ϕx |

{
δ(x′)− δ̄

}
dx dt

}
dx′ dt′

+

∫ T

0

∫
R
| f ′(v) | | vx |

{∫ T

0

∫
R
|ϕx′ |

{
δ(x′)− δ̄

}
dx′ dt′

}
dx dt.

At this point, it becomes clear that in order to estimate Θ, we must obtain a
bound on the L∞-norm of u and on its total variation. Since u is the “approximate
solution” of a monotone scheme in one-space dimension, it is well-known that we
have

‖ f ′(u) ‖ ‖ u ‖L∞(0,tN ;TV (R)) ≤‖ f ′(v) ‖ | v0 |TV (R),

With the above regularity property of the “approximate solution”, we can obtain

Θ ≤4C1

‖ δ ‖L∞(R)/R

εx
| η |TV (R),

where ‖ δ ‖L∞(R)/R = inf δ̄∈R ‖ δ − δ̄ ‖L∞(R), since

∫ T

0

∫
R
|ϕx′ | dx′ dt′ =

∫ T

0

∫
R
|ϕx | dx dt ≤ 2

| η |TV (R)

εx
W (T ).

This implies the following upper bound for the consistency error:

TEcons(u, v;T ) ≤ 4C1 | η |TV (R)

‖ δ ‖L∞(R)/R + ‖α ‖L∞(R)/R

εx
.

The error estimate follows as in the previous section. A discrete version of the
above argument can be easily obtained which, under the notation and assumptions
of Theorem 2.1, leads to the error estimate:

‖ u(tN )− v(tN ) ‖L1(R) ≤ 2 ‖ u0 − v0 ‖L1(R)

+ 8 | v0 |TV (R)

√
2 tN (‖ νv ‖∆x+ 2‖N ′(v) ‖ (‖ δ ‖L∞(R)/R + ‖α ‖L∞(R)/R))

+ ( b1(∆x)3/4 + b2 ∆x ) | v0 |TV (R),
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which gives the optimal rate of convergence of (∆x)1/2, as expected. Although the
above error estimate is new, we are more interested in the technique to obtain it
since it sheds light into the supraconvergence phenomenon. As we have just shown,
the optimal rate of convergence of (∆x)1/2 can be obtained even though the scheme
is not consistent because the consistency of its numerical flux and its conservativity
makes possible for the lack of consistency of the scheme to be compensated by the
regularity of its approximate solution u. The fact that the problem is nonlinear
does not play any fundamental role in this mechanism.

3. Proof of Theorem 2.1

In this section, we prove our Theorem 2.1. This section is closely related to
section 7 of [4] in which we establish the same result for the Engquist-Osher scheme
defined in uniform grids. Thus, we shall use the same notation and omit detailed
proofs when those are variations of similar proofs in [4].

a. The approximation inequality. We start by displaying the following inequal-
ity proven in [4, Proposition 7.6]. If e(tn) denotes the error ‖ u(tn) − v(tn) ‖L1(R),
then

e(tN ) ≤ 2 e(0) + 8
(
εx + εt‖f ′(v)‖

)
| v0 |TV (R) + 2 ‖ f ′(v) ‖ | v0 |TV (R) ∆t

+ 2 lim
w→χ

sup
1≤n≤N

{
E?div(u, v; tn)/W (tn)−Ediss(uh, v; tn)/W (tn)

}
,

where, in this case, the form Ediss(uh, v; tN) is given by

Ediss(uh, v; tN ) =

∫ tN

0

∫
R

N−1∑
n=0

∑
j∈Z

LRED n
j (v(t, x))φ(t, x, tn+1, xj) ∆j ∆t dx dt,

where the local rate of entropy dissipation LRED n
j (c) is given by

LRED n
j (c) =

1

∆t

∫ unj

un+1
j

(p1
j(u

n
j )− p1

j(s))U
′′(s− c) ds

+
1

∆j

∫ unj−1

un+1
j

(p2
j(u

n
j−1)− p2

j(s))U
′′(s− c) ds

+
1

∆j

∫ unj+1

un+1
j

(p3
j(u

n
j+1)− p3

j(s))U
′′(s− c) ds,

p1
j = s− ∆t

∆j
(
aj+1/2

∆j+1/2
−

bj−1/2

∆j−1/2
) f(s)− ∆t

∆j
(
αj+1/2

∆j+1/2
+
αj−1/2

∆j−1/2
)N(s),

p2
j =

aj−1/2

∆j−1/2
f(s) +

αj−1/2

∆j−1/2
N(s),

p3
j = −

bj+1/2

∆j+1/2
f(s) +

αj+1/2

∆j+1/2
N(s),
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and the dual form E?div(uh, v; tN ) is given by

E?div(uh, v; tN ) =−
∫ tN

0

∫
R

∫ tN

0

∫
R
U(u(t′, x′)− v(t, x))ϕt(t, x, t

′, x′) dx dt dx′ dt′

+

∫ tN

0

∫
R

∫
R
U(u(t′, x′)− v(tN , x))ϕ(tN , x, t′, x′) dx dt dx′

−
∫ tN

0

∫
R

∫
R
U(u(t′, x′)− v0(x))ϕ(0, x, t′, x′) dx dt dx′

−
N−1∑
n=0

∑
j∈Z

∫ tN

0

∫
R

{
aj+1/2

φ(t, x, tn+1, xj)− φ(t, x, tn+1, xj+1)

∆j+1/2

+ bj−1/2
φ(t, x, tn+1, xj−1)− φ(t, x, tn+1, xj)

∆j−1/2

}
· F (unj , v(t, x)) dx dt∆t

+
N−1∑
n=0

∑
j∈Z

∫ tN

0

∫
R

{
− αj+1/2

φ(t, x, tn+1, xj)− φ(t, x, tn+1, xj+1)

∆j+1/2

+ αj−1/2
φ(t, x, tn+1, xj−1)− φ(t, x, tn+1, xj)

∆j−1/2

}
· N (unj , v(t, x)) dx dt∆t.

The function U(·) is nothing but | · |, and F (u, c) and N (u, c) are defined as
follows:

F (u, c) =

∫ u

c

f ′(s)U ′(s− c) ds, N (u, c) =

∫ u

c

N ′(s)U ′(s− c) ds.(3.1)

The function φ is given by

φ(t, x, t′, xj) =
1

∆j

∫ xj+1/2

xj−1/2

ϕ(t, x, t′, s) ds.(3.2)

where the function ϕ = ϕ(t, x, t′, x′) is defined as follows:

ϕ = wεt(t− t′) ηεx(x− x′), (x, t), (x′, t′) ∈ R× R+,(3.3a)

where εt and εx are two arbitrary positive numbers and

wεt(s) =
1

εt
w(

s

εt
), ηεx(s) =

1

εx
η(
s

εx
),(3.3b)

for any s ∈ R. For future reference, we also set

W (t) =

∫ t

0

wεt(s) ds.(3.3c)

Finally, the functions w and η are smooth approximations to χ ≡ χ0 and χε, where

χε(x) =


(1 + ε)/2, for |x| ≤ (1− ε)/(1 + ε),

(1 + ε)2 (1− |x|)/4 ε, for |x| ∈ [(1− ε)/(1 + ε), 1],

0, elsewhere .
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It is easy to verify that we can find a sequence of functions η such that

lim
η→χε

| η |TV (R) = |χε |TV (R) = 1 + ε,(3.4a)

lim
η→χε

| η′ |TV (R) = |χ′ε |TV (R) = 2 + ε+ 1/ε.(3.4b)

lim
η→χε

‖ η ‖L∞(R) = ‖χε ‖L∞(R) = (1 + ε)/2.(3.4c)

b. Estimate of Ediss(uh, v; tn). To estimate Ediss(uh, v; tn), it is enough to follow
the proof of the corresponding result in [4, Proposition 7.1].

Proposition 3.1. Under condition (2.3f) on the viscosity term N , and if the
Courant-Friedrichs-Levy (CFL) condition (2.4) is satisfied, the local rate of en-
tropy dissipation LRED n

j (c) is nonnegative. Hence

−Ediss(uh, v; tn) ≤ 0.

Sketch of the proof. The above conditions ensure that the functions pij(s), i = 1, 2,
3, are nondecreasing in s. The result follows from this fact and the definition of
Ediss(uh, v; tn).

c. Estimate of E?div(uh, v; tN ).

Proposition 3.2. We have

lim
w→χ

sup
1≤n≤N

{
E?div(u, v; tn)/W (tn)

}
≤ TEWvisc + TEWcons + TEWh.o.t.,

where

TEWvisc(u, v; tn) ≤ C0

{
2
| η |TV (R)

εx

(
1 +

∆t

εt

)}
‖νv‖,

TEWcons(u, v; tn)≤ 2C1

(
1+

∆t

εt

)(
1 +

(∆x)1/2

εx

)
‖η‖L∞(R)

(
|δ|var,1/2+|α|var,1/2

)
,

TEWh.o.t.(u, v; tn) ≤C1

{
(∆t)2 | η |TV (R)

εt εx
‖ f ′ ‖ + 2

(∆x)2 | η′ |TV (R)

ε2x

(
1 +

∆t

εt

)}
,

where C0 = tn|v0|TV (R) and C1 = C0 ‖f ′(v)‖.

To prove this result, we proceed in several steps.

First step: Relating the dual form E?div(u, v; t) to the truncation error.
We start by suitably relating the dual form to the truncation error. To do that, we
will need the following averages of the function ϕ:

φ(t, x, tn+1, xj) =
1

∆t

∫ tn+1

tn
φ(t, x, s, xj) ds,(3.5a)

φ̂(t, x, tn+1, xj+1/2) =
1

∆j+1/2

∫ 1/2

−1/2

∫ xj+1+∆j+1 ρ

xj+∆j ρ

ϕ(t, x, tn+1, s) ds dρ,(3.5b)

where φ̂(t, x, tn+1, xj+1/2) has been defined in such a way that the following equality
holds:

φ̂x(t, x, tn+1, xj+1/2) =
φ(t, x, tn+1, xj)− φ(t, x, tn+1, xj+1)

∆j+1/2
.(3.5c)

With the above notation, we have the following upper bound for E?div(uh, v; tN ).
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Lemma 3.3. We have

E?div(uh, v; tN ) ≤
N−1∑
n=0

∑
j∈Z

∫ tN

0

∫
R

∆t

2
∆jφxt(t, x, t

n+1, xj)F (unj , v(t, x)) dx dt∆t

+
N−1∑
n=0

∑
j∈Z

∫ tN

0

∫
R

Ψ̃n
j (t, x)N (unj , v(t, x)) dx dt∆t

−
N−1∑
n=0

∑
j∈Z

∫ tN

0

∫
R

Φ̃n
j (t, x)F (unj , v(t, x)) dx dt∆t,

where

Φ̃n
j (t, x) = aj+1/2 φ̂x(t, x, tn+1, xj+1/2) + bj−1/2 φ̂x(t, x, tn+1, xj−1/2)

−∆j φx(t, x, tn+1, xj) +
∆t

2
∆jφxt(t, x, t

n+1, xj),

and

Ψ̃n
j (t, x) = − αj+1/2φ̂x(t, x, tn+1, xj+1/2) + αj−1/2φ̂x(t, x, tn+1, xj−1/2).

To prove this result, we use the fact that v is the entropy solution and make
some algebraic manipulations; see the proof of the similar result [4, Proposition
7.9].

Next, we need to relate the functions φ and φ̂ as defined in (3.5). The relations
we need are displayed in the following result, which can be obtained by using simple
Taylor expansions.

Lemma 3.4. We have

φ̂(t, x, tn+1, xj+1/2) = φ(t, x, tn+1, xj)−
∆j + 2∆j+1

6
φx(t, x, tn+1, xj)

+

∫ xj+3/2

xj+1/2

P+
j (x′)ϕx′x′(t, x, t

n+1, x′) dx′

+

∫ xj+1/2

xj−1/2

Q+
j (x′)ϕx′x′(t, x, t

n+1, x′) dx′,

and

φ̂(t, x, tn+1, xj−1/2) = φ(t, x, tn+1, xj) +
∆j + 2∆j−1

6
φx(t, x, tn+1, xj)

+

∫ xj+1/2

xj−1/2

Q−j (x′)ϕx′x′(t, x, t
n+1, x′) dx′

+

∫ xj−1/2

xj−3/2

P−j (x′)ϕx′x′(t, x, t
n+1, x′) dx′.
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The polynomials P± and Q± are given by

P+(x′) =
(xj+3/2 − x′)3

6 ∆j+1/2 ∆j+1
, P−(x′) =

(x′ − xj−3/2)3

6 ∆j−1/2 ∆j−1
,

Q+(x′) =
(x′ − xj−1/2 −∆j+1/2)3 + (∆j+1/2)3

6 ∆j+1/2 ∆j
+

∆j+1 −∆j

12 ∆j
(x′ − xj−1/2),

Q−(x′) =
(xj+1/2 − x′ −∆j−1/2)3 + (∆j−1/2)3

6 ∆j−1/2 ∆j
+

∆j−1 −∆j

12 ∆j
(xj+1/2 − x′).

With the above lemma, we can now rewrite the upper bound of E?div(uh, v; tN )
as the sum of three terms. The first, TEvisc(u, v; tN ), is that part of the truncation
error which contains the information of the viscosity of the numerical scheme. The
second term, TEcons(u, v; tN), contains information concerning the consistency of
the numerical scheme; indeed, if the scheme is consistent, then TEcons(u, v; tN ) =
0. We emphasize that to define this term, the definition of δj+1/2, (2.5), must

be used. The third term, TEh.o.t.(u, v; tN ), contains the high-order terms in the
truncation error and, as expected, will be dominated by the term TEvisc(u, v; tN )
and TEcons(u, v; tN ).

Lemma 3.5. We have

E?div(uh, v; tN ) ≤TEvisc(u, v; tN ) + TEcons(u, v; tN ) + TEh.o.t.(u, v; tN ),

where

TEvisc(u, v; tN ) =
N−1∑
n=0

∑
j∈Z

∫ tN

0

∫
R
V ISC n

j (v(t, x); t, x) dx dt∆t

−
N−1∑
n=0

∑
j∈Z

∫
R
F (unj , v(tN , x))

∆t

2
φx(tN , x, tn+1, xj) dx∆j ∆t

+
N−1∑
n=0

∑
j∈Z

∫
R
F (unj , v(t0, x))

∆t

2
φx(0, x, tn+1, xj) dx∆j ∆t,

TEcons(u, v; tN ) =
N−1∑
n=0

∑
j∈Z

∫ tN

0

∫
R
CONS nj (v(t, x); t, x) dx dt∆t,

TEh.o.t.(u, v; tN) =
N−1∑
n=0

∑
j∈Z

∫ tN

0

∫
R
HOT n

j (v(t, x); t, x) dx dt∆t

+
N−1∑
n=0

∑
j∈Z

∫
R
F (unj , v(tN , x))

∆t

2
φx(tN , x, tn+1, xj) dx∆j ∆t

−
N−1∑
n=0

∑
j∈Z

∫
R
F (unj , v(t0, x))

∆t

2
φx(0, x, tn+1, xj) dx∆j ∆t.

The ‘viscosity’ term V ISC n
j (c; t, x) is given by

V ISC n
j (c; t, x) =

time

V ISC n
j (c; t, x) +

cent

V ISC n
j (c; t, x) +

visc

V ISC n
j (c; t, x),
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where
time

V ISC n
j (c; t, x) =F (unj , c)

{∆t

2
∆j φxt(t, x, t

n+1, xj)
}
,

cent

V ISC n
j (c; t, x) =F (unj , c)

{
aj+1/2

∆j + 2 ∆j+1

6

− bj−1/2
∆j + 2 ∆j−1

6

}
φxx(t, x, tn+1, xj),

visc

V ISC n
j (c; t, x) =N (unj , c)

{
αj+1/2

∆j + 2∆j+1

6

+ αj−1/2
∆j + 2∆j−1

6

}
φxx(t, x, tn+1, xj).

The ‘consistency’ term CONS nj (c; t, x) is given by

CONS nj (c; t, x) =
cent

CONS nj (c; t, x) +
visc

CONS nj (c; t, x),

where
cent

CONS
n

j (c; t, x) =F (unj , c) (−δj+1/2 + δj−1/2)φx(t, x, tn+1, xj),

visc

CONS
n

j (c; t, x) =N (unj , c) (−αj+1/2 + αj−1/2)φx(t, x, tn+1, xj).

Finally, the ‘high-order’ term HOT n
j (c; t, x) is given by

HOT n
j (c; t, x) =

time

HOT n
j (c; t, x) +

cent

HOT n
j (c; t, x) +

visc

HOT n
j (c; t, x),

where
time

HOT n
j (c; t, x) =F (unj , c)

{
∆j φx(t, x, tn+1, xj)−∆j φx(t, x, tn+1, xj)

+
∆t

2
∆j φxt(t, x, t

n+1, xj)
}
,

cent

HOT n
j (c; t, x) =

{
− aj+1/2

∫ xj+3/2

xj+1/2

P+
j (x′)ϕx′x′x(t, x, tn+1, x′) dx′

− aj+1/2

∫ xj+1/2

xj−1/2

Q+
j (x′)ϕx′x′x(t, x, tn+1, x′) dx′

− bj−1/2

∫ xj+1/2

xj−1/2

Q−j (x′)ϕx′x′x(t, x, tn+1, x′) dx′

− bj−1/2

∫ xj−1/2

xj−3/2

P−j (x′)ϕx′x′x(t, x, tn+1, x′) dx′
}
F (unj , c),

visc

HOT n
j (c; t, x) =

{
− αj+1/2

∫ xj+3/2

xj+1/2

P+
j (x′)ϕx′x′x(t, x, tn+1, x′) dx′

− αj+1/2

∫ xj+1/2

xj−1/2

Q+
j (x′)ϕx′x′x(t, x, tn+1, x′) dx′

+ αj−1/2

∫ xj+1/2

xj−1/2

Q−j (x′)ϕx′x′x(t, x, tn+1, x′) dx′

+ αj−1/2

∫ xj−1/2

xj−3/2

P−j (x′)ϕx′x′x(t, x, tn+1, x′) dx′
}
N (unj , c).
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Second step: Estimating TEvisc(u, v; tN ). In this section, we prove the following
result.

Lemma 3.6. If (2.3) and (2.4) hold, we have

TEvisc(u, v; tN ) ≤ 2C0

| η |TV (R)

εx

(
1 +

∆t

εt

)
‖νv‖∆x,

where C0 = tN |v0|TV (R)W (tN ).

We need the following auxiliary result whose proof can be found in the proof of
[4, Lemma 7.13].

Lemma 3.7. We have

sup
t∈(0,tN )

{ N−1∑
n=0

wεt(t− tn+1) ∆t

}
≤ 2

(
1 +

∆t

εt

)
W (tN ).

Proof of Lemma 3.6 . As in the proof of [4, Lemma 7.11], it is enough to consider
an entropy solution v that is everywhere smooth except on a single discontinuity
curve C = {(x(t), t) : t ∈ (0, tN )}.

We have

TEvisc(u, v; tN ) =
N−1∑
n=0

∑
j∈Z

Ξ(tn+1, xj) ∆j∆t,

where

Ξ(tn+1, xj) =

∫ tN

0

∫
R

{
F (unj , v(t, x))

∆t

2
φxt(t, x, t

n+1, xj)

+ F (unj , v(t, x))

(
aj+1/2

∆j + 2∆j+1

6∆j

− bj−1/2
∆j + 2∆j−1

6∆j

)
φxx(t, x, tn+1, xj)

+N (unj , v(t, x))

(
αj+1/2

∆j + 2∆j+1

6∆j

+ αj−1/2
∆j + 2∆j−1

6∆j

)
φxx(t, x, tn+1, xj)

}
dxdt

−
∫
R
F (unj , v(tN , x))

∆t

2
φx(tN , x, tn+1, xj) dx

+

∫
R
F (unj , v(0, x))

∆t

2
φx(0, x, tn+1, xj) dx.
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A couple of integrations by parts yields

Ξ(tn+1, xj)=−
∫ tN

0

∫ x(t)

−∞

{
1

2
∆tFt+

(
aj+1/2

∆j + 2∆j+1

6∆j
− bj−1/2

∆j + 2∆j−1

6∆j

)
Fx

+

(
αj+1/2

∆j + 2∆j+1

6∆j
+ αj−1/2

∆j + 2∆j−1

6∆j

)
Nx
}
φx dxdt

−
∫ tN

0

∫ ∞
x(t)

{
1

2
∆tFt +

(
aj+1/2

∆j + 2∆j+1

6∆j
− bj−1/2

∆j + 2∆j−1

6∆j

)
Fx

+

(
αj+1/2

∆j + 2∆j+1

6∆j
+ αj−1/2

∆j + 2∆j−1

6∆j

)
Nx
}
φx dxdt

−
∫ tN

0

{
−1

2
∆t[F ]

[f ]

[v]
+

(
aj+1/2

∆j + 2∆j+1

6∆j
− bj−1/2

∆j + 2∆j−1

6∆j

)
[F ]

+

(
αj+1/2

∆j + 2∆j+1

6∆j
+ αj−1/2

∆j + 2∆j−1

6∆j

)
[N ]

}
φx dt,

where the last integral is understood to be along the discontinuity line C.
The jump of a function G(v) across C at a point (x(t), t) is denoted [G] =

G(v(t, x(t) + 0))−G(v(t, x(t) − 0)).
Setting ν̃j = νj(u; v(t, x(t) − 0), v(t, x(t) + 0)), where νj(u; v−, v+) is defined in

Theorem 2.1, we get

Ξ(tn+1, xj) = −
∫ tN

0

{∫ x(t)

−∞
ν̃jvxφx dx+ ν̃j [v]φx +

∫ ∞
x(t)

ν̃jvxφx dx

}
dt.

Proceeding again as in [4], we set

‖ν̃j‖ = sup
t∈(0,tN )
x∈R

sup
u∈R
|ν̃j |,

and thus

|Ξ(tn+1, xj)| ≤ ‖ν̃j‖
∫ tN

0

{∫ x(t)

−∞
|vx||φx| dx+ |[v]||φx|+

∫ ∞
x(t)

|vx||φx| dx
}
dt.

(3.6)

We would like to analyze further the dependence of ν̃j with respect to u. Setting
ν#(u) = νj(u; v−, v+) and taking into account (3.1), direct calculations yield

∂uν
#(u) =

1

2

U ′(u− v+)− U ′(u− v−)

v+ − v−

{(
αj+1/2

∆j + 2∆j+1

3∆j

+ αj−1/2
∆j + 2∆j−1

3∆j

)
N ′(u)

+

(
aj+1/2

∆j + 2∆j+1

3∆j
− bj−1/2

∆j + 2∆j−1

3∆j

)
f ′(u)

−∆t
f(v+)− f(v−)

v+ − v− f ′(u)

}
.
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Therefore ν#(u) is constant for any value of u which does not lie between v− and
v+. This implies that

sup
u∈R
|ν#(u)| = sup

u∈[v−∧v+,v−∨v+]

|ν#(u)| ≡ νj(v−, v+) ∆x.

Inserting νj(v
−, v+) in the bound (3.6) and using the definition of ‖νv‖, we get,

since v is the entropy solution

TEvisc(u, v; tN ) ≤ Taux‖νv‖∆x

∫ tN

0

{∫ x(t)

−∞
|vx| dx+ |[v]|+

∫ ∞
x(t)

|vx|dx
}
dt

≤ TauxtN |v|L∞(0,tN ;TV (R))‖νv‖∆x

≤ TauxtN | v0 |TV (R)‖νv‖∆x,

where

Taux = sup
t∈(0,tn)
x∈R

{N−1∑
n=0

∑
j∈Z
|φx(t, x, tn+1, xj)|∆j∆t

}

≤
{∫

R

1

εx
| η′(y) | dy

}
sup

t∈(0,tN )

{ N−1∑
n=0

wεt(t− tn+1) ∆t

}
.

Taking Lemma 3.7 into account achieves the proof.

Third step: Estimating TEcons(u, v; tN ).

Lemma 3.8. We have

TEcons(u, v; tN ) ≤ 2C1

(
1 +

∆t

εt

) (
1 +

(∆x)1/2

εx

)
‖ η ‖L∞(R)

(
| δ |var,1/2 + |α |var,1/2

)
,

where C1 = tN |v0|TV (R) ‖N ′(v)‖W (tN ).

Note that if the scheme is consistent, the upper bound for TEcons(u, v; tN ) is
equal to zero, as expected.

We will need the following simple auxiliary result.

Lemma 3.9. We have

1

εx

∑
|x−xj |≤εx

| δj+1/2 − δj−1/2 | ≤
(

1 +
(∆x)1/2

εx

)
| δ |var,1/2.

Proof of Lemma 3.8. The consistency error TEcons(u, v; tN) is the sum of two terms
of the form

Θ =−
N−1∑
n=0

∑
j∈Z

∫ tN

0

∫
R

(
G(unj , v(t, x))

)
φ(t, x, tn+1, xj)x (ζj+1/2 − ζj−1/2) dx dt∆t,

one of which has ζ = δ and G = F , and the other ζ = α and G = N . Thus, it is
enough to get an estimate for Θ.

To do that, we assume that the entropy solution v is smooth; see the proof [4,
Proposition 5.5]. First, we integrate by parts in the x variable to obtain

Θ =
N−1∑
n=0

∑
j∈Z

∫ tN

0

∫
R

(
G(unj , v(t, x))

)
x
φ(t, x, tn+1, xj) (ζj+1/2 − ζj−1/2) dx dt∆t

≤Taux tN ‖N ′(v) ‖ |v0|TV (R), by (2.3f) and (3.1),
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where

Taux = sup
t∈(0,tn)
x∈R

{N−1∑
n=0

∑
j∈Z

φ(t, x, tn+1, xj) | ζj+1/2 − ζj−1/2 |∆j∆t

}

≤ ‖ η ‖L∞(R) sup
t∈(0,tN )

{N−1∑
n=0

wεt(t− tn+1)∆t

}{∑
|x−xj|≤εx |ζj+1/2 − ζj−1/2|

εx

}
.

Taking Lemmas 3.7 and 3.9 into account achieves the proof.

Fourth step: Estimating TEh.o.t.(u, v; tN ).

Lemma 3.10. Suppose that the conditions (2.3) are satisfied. Then,

TEh.o.t.(u, v; tN ) ≤C1

{
(∆t)2 | η |TV (R)

εt εx
‖ f ′ ‖ + 2

(∆x)2 | η′ |TV (R)

ε2x

(
1 +

∆t

εt

)}
,

where C1 = tn|v0|TV (R) ‖f ′(v)‖W (tn).

To prove the above result, we rewrite TEh.o.t.(u, v; tN ) as the sum

time

TEh.o.t.(u, v; tN) +
cent

TEh.o.t.(u, v; tN) +
visc

TEh.o.t.(u, v; tN ),

with the obvious notation, and estimate each of the above three terms. The follow-
ing estimate can be easily obtained by following the techniques used in the proofs
of [4, Lemma 7.12] and [4, Lemma 7.13] and by using (2.3f).

Lemma 3.11. We have

time

TEh.o.t.(u, v; tN ) ≤C1

(∆t)2 | η |TV (R)

εt εx
‖ f ′ ‖.

To estimate the two remaining terms, we need a couple of simple auxiliary results.

Lemma 3.12. We have

p+
j ≡ ‖P+

j ‖L∞(xj+1/2,xj+3/2) ≤
1

3
∆j+1,

q+
j ≡ ‖Q+

j ‖L∞(xj+1/2,xj+3/2) ≤
1

6
max{∆j ,∆j+1},

q−j ≡ ‖Q−j ‖L∞(xj+1/2,xj+3/2) ≤
1

6
max{∆j−1,∆j},

p−j ≡ ‖P−j ‖L∞(xj+1/2,xj+3/2) ≤
1

3
∆j−1.

This result follows easily from the definition of the polynomials P±j and Q±j in
Lemma 3.4.

Lemma 3.13. Suppose the conditions (2.3) are satisfied. Then we have

κj ≡ | aj−1/2 | p+
j−1 + | aj+1/2 | q+

j + | bj−1/2 | q−j + | bj+1/2 | p−j+1 ≤
1

2
( ∆x )2,

κ̃j ≡ |αj−1/2 | p+
j−1 + |αj+1/2 | q+

j + |αj−1/2 | q−j + |αj+1/2 | p−j+1 ≤
1

2
( ∆x )2.

The proof follows easily from the preceding lemma and conditions (2.3e) and
(2.3f). We can now estimate the two remaining terms.
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Lemma 3.14. Suppose that the conditions (2.3) are satisfied. Then,

cent

TEh.o.t.(u, v; tN )/W (tN ) ≤C1

(∆x)2 | η′ |TV (R)

ε2x

(
1 +

∆t

εt

)
,

visc

TEh.o.t.(u, v; tN )/W (tN ) ≤C1

(∆x)2 | η′ |TV (R)

ε2x

(
1 +

∆t

εt

)
.

Proof. We only have to prove the first estimate since the second is similar and the
upper bounds for κj and κ̃j given in Lemma 3.13 are identical. To do that, let

us rewrite
cent

TEh.o.t.(u, v; tN ) as the sum Θ1 + Θ2 + Θ3 + Θ4 with obvious notation.
Next, let us estimate the first term

Θ1 =
N−1∑
n=0

∑
j∈Z

∫ tN

0

∫
R
F (unj , v(t, x)) aj+1/2

·
∫ xj+3/2

xj+1/2

P+
j (x′)ϕx′x′x(t, x, tn+1, x′) dx′ dx dt∆t.

We can assume that the entropy solution v is smooth since the general case can
be obtained by a standard density argument; see the proof [4, Proposition 5.5].
Integrating by parts in the variable x, taking absolute values, and changing the
index j, we get

Θ1 ≤
∫ tN

0

∫
R
| f ′(v(t, x)) | | vx(t, x) | T1(t, x) dx dt,

where

T1(t, x) =
N−1∑
n=0

∑
j∈Z
| aj−1/2 | p+

j−1

∫ xj+1/2

xj−1/2

|ϕx′x′(t, x, tn+1, x′) | dx′∆t.

Proceeding in a similar way with Θ2,Θ3, and Θ4, we get

cent

TEh.o.t.(u, v; tN ) ≤
∫ tN

0

∫
R
| f ′(v(t, x)) | | vx(t, x) | T (t, x) dx dt

where

T (t, x) =
N−1∑
n=0

∑
j∈Z

κj

∫ xj+1/2

xj−1/2

|ϕx′x′(t, x, tn+1, x′) | dx′∆t.

Thus, by (2.3f),

cent

TEh.o.t.(u, v; tN ) ≤Taux tN ‖N ′ ‖ |v0 |TV (R),

where

Taux = sup
x∈R,t∈(0,tN)

T (t, x)

≤ (∆x)2

2ε2x

{∫
R
η′′(y) | dy

}
sup

t∈(0,tN )

{ N−1∑
n=0

wεt(t− tn+1) ∆t

}
≤

(∆x)2 | η′ |TV (R)

ε2x

(
1 +

∆t

εt

)
W (tN ),
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by the definition of ϕ (3.3), by Lemma 3.13, and by Lemma 3.7. This completes
the proof.

Lemma 3.10 follows easily from Lemmas 3.11 and 3.14.

d. Proof of the error estimate. To obtain the error estimate, we proceed exactly
as in [4]. If we insert the estimates obtained in §3.b and §3.c into the approximation
inequality of §3.a, and we take the auxiliary function η as in (3.4), we obtain

e(tN ) ≤ 2 e(0) + 8
(
εx + εt‖f ′(v)‖

)
| v0 |TV (R) + 2 ‖ f ′(v) ‖ | v0 |TV (R) ∆t

+ 2C0

{
2
| η |TV (R)

εx

(
1 +

∆t

εt

)}
‖νv‖

+ 4C1

(
1 +

∆t

εt

) (
1 +

(∆x)1/2

εx

)
‖ η ‖L∞(R)

(
| δ |var,1/2 + |α |var,1/2

)
+ 2C1

{
(∆t)2 | η |TV (R)

εt εx
‖ f ′ ‖ + 2

(∆x)2 | η′ |TV (R)

ε2x

(
1 +

∆t

εt

)}
,

where C0 = tN |v0|TV (R) and C1 = C0 ‖N ′(v) ‖. The estimate of Theorem 2.1 is
then obtained by eliminating the parameter ∆t by taking into account the CFL
condition (2.4) and then taking the very same optimal values taken for the case
treated in [4], namely,

ε?x =
√
tN ‖ νv ‖∆x/2, εt = At (∆x)3/4, ε = A (∆x)1/4.

This concludes the proof of Theorem 2.1.

4. Concluding remarks

In [4], we proposed a general theory of a priori error estimates for scalar con-
servation laws, based on the original Kuznetsov approximation theory [12]. In
the present paper, this approach is applied to flux-splitting monotone schemes on
(Cartesian products of) nonuniform grids. The nonuniformity of the grids brings up
a problem of consistency and supraconvergence that has no counterpart in the case
of uniform grids. Indeed, the global error of these schemes seems to be insensitive
to the deterioration of the part of the (formal) truncation error due to the lack of
consistency of the schemes.

This supraconvergence phenomenon has remained unexplained until now. In
this paper, we identify the proper truncation error and show that optimal error
estimates can be proven without using any regularity property of the approximate
solution provided the schemes are “consistent enough.” On the other hand, we show
that the regularity properties of the numerical approximation can compensate the
lack of consistency of the scheme because of the special structure of the part of
the truncation error generated by the lack of consistency of the scheme. This
special structure does not have anything to do with the nonlinear nature of the
problem. Instead, it is a reflection of the consistency of the numerical flux and
the fact that the scheme is written in conservation form. It is thanks to this that
the supraconvergence phenomenon takes place. Let us point out that our analysis
does not rule out the possibility of supraconvergence for schemes written in non-
conservative form. To settle this question, the tools provided in this paper can be
easily used.
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The application of our approach to problems defined on general multidimensional
grids, to nonsplitting numerical fluxes, and to high-order accurate methods are the
subject of forthcoming publications.
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