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ON NUMERICAL METHODS FOR DISCRETE LEAST-SQUARES

APPROXIMATION BY TRIGONOMETRIC POLYNOMIALS

HEIKE FASSBENDER

Abstract. Fast, efficient and reliable algorithms for discrete least-squares
approximation of a real-valued function given at arbitrary distinct nodes in
[0, 2π) by trigonometric polynomials are presented. The algorithms are based
on schemes for the solution of inverse unitary eigenproblems and require only
O(mn) arithmetic operations as compared to O(mn2) operations needed for
algorithms that ignore the structure of the problem. An algorithm which
solves this problem with real-valued data and real-valued solution using only
real arithmetic is given. Numerical examples are presented that show that
the proposed algorithms produce consistently accurate results that are often
better than those obtained by general QR decomposition methods for the
least-squares problem.

1. Introduction

A problem in signal processing is the approximation of a function known only at
some measured points by a trigonometric function. A number of different models
for representing the measured points as a finite superposition of sine- and cosine-
oscillations are possible. One choice could be to compute the trigonometric interpo-
lating function. Then several numerical algorithms are available ([4, 5, 15]). But in
general a large number of measured points are given, such that this approach leads
to a trigonometric polynomial with a lot of superimposed oscillations (and a large
linear system to solve). In practical applications it is often sufficient to compute a
trigonometric polynomial with only a small number of superimposed oscillations.
A different, often chosen approach is the (fast) Fourier transform ([15]). In this
case the frequencies of the sine- and cosine-oscillations have to be chosen equidis-
tant. More freedom in the choice of the frequencies and the number of superposed
oscillations gives the following approach. Given a set of m arbitrary distinct nodes
{θk}mk=1 in the interval [0, 2π), a set of m positive weights {ω2

k}mk=1, and a real-
valued function f(θ) whose values at the nodes θk are explicitly known. Then the
trigonometric function

t(θ) = a0 +
∑̀
j=1

(aj cos jθ + bj sin jθ), aj , bj ∈ R,(1)
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of order at most ` < m/2 is sought that minimizes the discrete least-squares error

||f − t||R :=

√√√√ m∑
k=1

|f(θk)− t(θk)|2ω2
k.(2)

In general, m (the number of measured functional values) is much larger than
n = 2`+ 1 (the number of coefficients to be determined).

Standard algorithms for solving the approximation problem (2) require O(mn2)
arithmetic operations. In this paper faster algorithms are presented which make
use of the special structure of the problem (2). In [17] Reichel, Ammar, and Gragg
reformulate the problem (2) as the following standard least-squares problem: Min-
imize

||DAc−Dg||2 = min,(3)

where D = diag(ω1, ..., ωm) ∈ Cm×m is a diagonal matrix with the given weights
on the diagonal and A is a transposed Vandermonde matrix

A =


1 z1 · · · zn−1

1

1 z2 · · · zn−1
2

...
...

...
1 zm · · · zn−1

m

 ∈ Cm×n
with zk = exp(iθk). g = [g(z1), ..., g(zm)]T ∈ Cm is a vector of the values of a
complex function g(z) and c = [c0, ..., cn−1]T ∈ Cn is the solution vector. With the
proper choice of n and g, it is easy to see that the coefficients of the trigonometric
polynomial (1) that minimizes the error (2) can be read off of the least-squares
solution ĉ of (3) (see [17]).

The solution ĉ can be computed by using the QR decomposition of DA. Since
DA has full column rank, there is an m ×m unitary matrix Q with orthonormal
columns and an m× n upper triangular matrix R with positive diagonal elements
such that

DA = QR = (Q1|Q2)

(
R1

0

)
= Q1R1,

where Q1 ∈ Cm×n has orthonormal columns and R1 ∈ Cn×n has positive diagonal
elements. The solution of (3) is given by ĉ = R−1

1 QH1 Dg. Algorithms that compute
the QR decomposition of DA without using the special structure require O(mn2)
arithmetic operations ([14]). Demeure [9] presents an O(mn+n2 +m) algorithm to
compute the QR decomposition of a transposed Vandermonde matrix. This scheme
explicitly uses AHA.

In [17] Reichel, Ammar, and Gragg present an approach to compute the QR
decomposition of DA that is based on computational aspects associated with the
family of polynomials orthogonal with respect to an inner product on the unit circle.
Such polynomials are known as Szegö polynomials. The following interpretation
of the elements of Q1 and R1 in terms of Szegö polynomials can be given : Q1 is
determined by the values of the Szegö polynomials at the nodes zk. R1 expresses
the power basis in terms of the orthonormal Szegö polynomials. Therefore, the
columns of R−1

1 are the coefficients of the Szegö polynomials in the power basis.
There exist algorithms for determining the values of the Szegö polynomials at nodes
zk ([17, 12]) which require O(mn) arithmetic operations. The computation of the
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columns of R−1
1 relies on the Szegö recursion and is closely related to the Levinson

algorithm as (DA)TDA = RT1 R1 is a Toeplitz matrix.
Observe that

DA =

 ω1 ω1z1 ω1z
2
1 · · · ω1z

n−1
1

...
...

...
...

ωm ωmzm ωmz
2
m · · · ωmz

n−1
m


= (q,Λq,Λ2q, ...,Λn−1q)

= σ0(q0,Λq0,Λ
2q0, ...,Λ

n−1q0)

with q := (ω1, ..., ωm)T , σ0 = ||q||2, q0 := σ−1
0 q and Λ = diag(z1, ..., zm). Thus,

the matrix DA is given by the first n columns of the Krylov matrix K(Λ, q,m) =
(q,Λq, ...,Λm−1q). We may therefore use the following consequence of the Implicit
Q Theorem to compute the desired QR decomposition. If there exists a unitary
matrix U such that UHΛU = H is a unitary upper Hessenberg matrix with positive
subdiagonal elements, then the QR decomposition of K(Λ, q0,m) is given by UR
with R = K(H, e1,m). The construction of such a unitary Hessenberg matrix from
spectral data, here contained in Λ and q0, is an inverse eigenproblem. Thus the
best trigonometric approximation to f can be computed via solving this inverse
eigenproblem. Because of the uniqueness of the here given QR decomposition of
K(Λ, q0,m), it follows from the above given interpretation of the elements of Q1

that the elements in U are the values of the Szegö polynomials at the nodes zk.
Thus solving the inverse unitary Hessenberg eigenvalue problem UHΛU = H is
equivalent to computing Szegö polynomials.

Unitary Hessenberg matrices have special properties which allow the develop-
ment of efficient algorithms for this class of matrices. Any n × n unitary Hessen-
berg matrix with positive subdiagonal elements can be uniquely parametrized by
n complex parameters, that is

H = G1(γ1)G2(γ2) · · ·Gn(γn)

for certain complex-valued parameters |γk| < 1, 1 ≤ k < n, and |γn| = 1. Here
Gk(γk) denotes the n× n Givens reflector in the (k, k + 1) plane

Gk = Gk(γk) = diag(Ik−1,

[
−γk σk
σk γk

]
, In−k−1)

with γk ∈ C, σk ∈ R+, |γk|2 + σ2
k = 1, and

Gn(γn) = diag(In−1,−γn)

with γn ∈ C, |γn| = 1. The nontrivial entries γk are called Schur parameters and the
σk are called complementary Schur parameters. Ammar, Gragg, and Reichel make
use of this parametrization in [2] by developing an efficient and reliable algorithm
(IUQR-algorithm) for solving the inverse unitary Hessenberg eigenvalue problem.
The algorithm manipulates the n complex parameters instead of the n2 matrix
elements. An adaption of the IUQR scheme to the computation of the vector
c′ = QH1 Dg can be given, which requires O(mn) arithmetic operations. After
computing the vector c′, the least-squares solution ĉ = R−1

1 c′ of (3) can be obtained
using an algorithm closely related to the Levinson algorithm. Reichel, Ammar, and
Gragg present in [17] an O(n2) algorithm to compute R−1

1 b for an arbitrary vector
b ∈ Cn.
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The algorithms proposed by Reichel, Ammar, and Gragg in [17] construct the
least-squares solution ĉ of (3) in O(mn + n2) arithmetic operations. The coeffi-
cients of the optimal trigonometric polynomial t of (2) can be recovered from ĉ.
This representation of t is convenient if we desire to integrate or differentiate the
polynomial or if we wish to evaluate it at many equidistant points on a circle with
a center at the origin. If we, on the other hand, only desire to evaluate t at a few
points, then we can use the representation of t in terms of Szegö polynomials. For
details see [17].

In [3] Van Barel and Bultheel generalize the method by Ammar, Gragg, and
Reichel to solve a discrete linearized rational least-squares approximation on the
unit circle. Further generalizations are given by Bultheel and Van Barel in [6].

In [16] Newbery presents an algorithm for least-squares approximation by trigo-
nometric polynomials which is closely related to the computation of Szegö polyno-
mials. This O(n2) algorithm and its connection to the algorithms presented here is
discussed in [11, 13].

The method proposed by Reichel, Ammar, and Gragg to solve the real-valued
approximation problem (2) computes the real-valued solution using complex arith-
metic by solving an inverse unitary Hessenberg eigenvalue problem UHΛU = H,
where a unitary Hessenberg matrix is constructed from spectral data. Now H =
G1(γ1)G2(γ2) · · ·Gn(γn) can be transformed to GoG

H
e by a unitary similarity trans-

formation (see [1]), where

Go=G1(γ1)G3(γ3) · · ·G2[(n+1)/2]−1(γ2[(n+1)/2]−1)=


−γ1 σ1

σ1 γ1

−γ3 σ3

σ3 γ3

. . .


is the product of the odd numbered elementary reflectors and

GHe = G2(γ2)G4(γ4) · · ·G2[n/2](γ2[n/2]) =


1
−γ2 σ2

σ2 γ2

. . .


is the product of the even numbered elementary reflectors. Here [x] =
max{i ∈ N|i ≤ x}. Go, Ge are block diagonal matrices with block size at most two.
Thus the inverse unitary Hessenberg eigenvalue problem UHΛU = H is equivalent
to an inverse eigenvalue problem QH(Λ − λI)QGe = Go − λGe, where a Schur
parameter pencil is constructed from spectral data.

In this paper numerical methods for the trigonometric approximation are dis-
cussed which rely on this inverse eigenvalue problem for Schur parameter pen-
cils. Especially, an algorithm is developed which requires O(mn) arithmetic opera-
tions to solve the real-valued approximation problem (2) using only real arithmetic.
The following approach for solving the approximation problem (2) is considered:

(2) is reformulated to a real-valued least-squares problem ||Df̂ − DÃt̃||2 where

D ∈ Rm×m, Ã ∈ Rm×n, f̂ ∈ Rm, t̃ ∈ Rn. This least-squares problem will be solved

via an QR decomposition of DÃ. As DÃ is a real m × n matrix with full col-

umn rank, there exists a unique “skinny” real QR decomposition Q̃1R̃1 of DÃ

where Q̃1 ∈ Rm×n has orthonormal columns and R̃1 ∈ Rn×n is upper triangular
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with positive diagonal entries [14, Theorem 5.2.2]. First it is shown that the Q-

factor of the QR decomposition of DÃ is the unitary matrix Q which transforms
Λ = diag(z1, ..., zm) to Schur parameter pencil form Go − λGe. The R-factor of
the desired QR decomposition is a modified Krylov matrix based on GoG

H
e . The

computation of R implicitly yields the Cholesky factorization of a bordered block-
Toeplitz-plus-block-Hankel matrix with 2 × 2 blocks. An algorithm for inverting
the upper square subblock of R is given.

In Sections 3 and 4 algorithms for computing Q̃1 and R̃1 are developed, which
use only real arithmetic and require merely O(mn) arithmetic operations. For

that purpose the effect of the transformation matrix Q̃1 on the real and imaginary
part of Λ = diag(z1, ..., zm) = diag(cos θ1, ..., cos θm) + i diag(sin θ1, ..., sin θm) is
considered.

Numerical results are given in Section 5. We will see that the proposed algorithms
produce consistently accurate results that are often better than those obtained by
general QR decomposition methods for the least-squares problem.

2. A real-valued approach

New, fast algorithms to solve the discrete least-squares approximation are devel-
oped, particularly algorithms which solve this problem with real-valued data and
real-valued solution in O(mn) arithmetic operations using only real arithmetic. In-
stead of the approach used by Reichel, Ammar, and Gragg the following real-valued
linear least-squares problem is considered. Since

 1 sin θ1 cos θ1 · · · sin `θ1 cos `θ1

...
...

...
...

...
1 sin θm cos θm · · · sin `θm cos `θm




a0

b1
a1

...
b`
a`


=

 t(θ1)
...

t(θm)



Ã t̃ = t̂,

it follows with D = diag(ω1, ..., ωm) and f̂ = (f(θ1), ..., f(θm))T that

||f − t||R = ||D(f̂ − t̂)||2 = ||Df̂ −DÃt̃||2.(4)

As proven in [11] the matrix (DÃ)T (DÃ) belonging to the normal equations
corresponding to (4),

(DÃ)T (DÃ)t̃ = (DÃ)TDf̂,

is a bordered block-Toeplitz-plus-block-Hankel-matrix with 2× 2 blocks. In partic-
ular

(DÃ)TDÃ =


x11 xT1 · · · xT`
x1

... T +H
x`
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with the symmetric block-Toeplitz-matrix

T =



A0 A1 A2 A3 · · · · · · A`−1

AT1 A0 A1 A2 · · · · · · A`−2

AT2 AT1 A0 A1 · · · · · · A`−3

AT3 AT2 AT1 A0
. . . A`−4

...
...

...
. . .

. . .
. . .

...
...

...
...

. . . A0 A1

AT`−1 AT`−2 AT`−3 AT`−4 · · · AT1 A0


∈ R2`×2`

and the symmetric block-Hankel-matrix

H =



B0 B1 B2 · · · B`−2 B`−1

B1 B2 B3 · · · B`−1 B`
B2 B3 B4 · · · B` B`+1

...
...

...
...

...
B`−2 B`−1 B` · · · B2`−4 B2`−3

B`−1 B` B`+1 · · · B2`−3 B2`−2


∈ R2`×2`

where

2A0 = I,

2Aj =

( ∑m
p=1 ω

2
p cos jθp −

∑m
p=1 ω

2
p sin jθp∑m

p=1 ω
2
p sin jθp

∑m
p=1 ω

2
p cos jθp

)
, j = 1, 2, ..., `− 1,

2Bj =

(
−
∑m
p=1 ω

2
p cos(j + 2)θp

∑m
p=1 ω

2
p sin(j + 2)θp∑m

p=1 ω
2
p sin(j + 2)θp

∑m
p=1 ω

2
p cos(j + 2)θp

)
, j = 0, 1, ..., 2`− 3,

x11 =
m∑
p=1

ω2
p, xTj = (

m∑
p=1

ω2
p sin jθp,

m∑
p=1

ω2
p cos jθp), j = 2, 3, ..., `.

The minimum norm solution t̃ of the linear least-squares problem (4) can be

computed by using the QR decomposition of DÃ. Since DÃ has full column rank
n = 2`+1, there exists anm×m orthogonal matrix Q and an m×n upper triangular
matrix R with positive diagonal elements such that

DÃ = QR = (Q1|Q2)

(
R1

0

)
= Q1R1,

where R1 ∈ Rn×n has positive diagonal elements and Q1 ∈ Rm×n has orthonormal
columns. The minimum norm solution t̃ of (4) is therefore given by

t̃ = R−1
1 QH1 Df̂.

Moreover

(DÃ)TDÃ = RT1 R1.

Thus R1 is the Cholesky factor of (DÃ)TDÃ. Implicitly we have to compute the
Cholesky factorization of the special bordered block-Toeplitz-plus-block-Hankel-

matrix (DÃ)TDÃ.

Algorithms that compute the QR decomposition of DÃ without using its struc-
ture require O(mn2) arithmetic operations. In this paper we present algorithms
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for the solution of the least-squares problem (4) that implicitly compute the QR

decomposition of DÃ and require only O(mn) arithmetic operations.
Let Λ = diag(eiθ1 , ..., eiθm), then because of cos θ = 1

2 (eiθ + e−iθ) and sin θ =
1
2i(e

iθ − e−iθ) it follows with q = (ω1, ..., ωm)T that

DÃ =
1

2
[(Λ0+(ΛH)0)q,−i(Λ−ΛH)q, (Λ+ΛH)q, ...,−i(Λ`−(ΛH)`)q, (Λ`+(ΛH)`)q].

Let κ(Λ, q, `) be a modified Krylov matrix

κ(Λ, q, `) = [q,Λq,ΛHq,Λ2q, (ΛH)2q, ...,Λ`q, (ΛH)`q] ∈ Cm×(2`+1),

whose columns are the vectors of the Krylov sequence {q,ΛHq, (ΛH)2q, ..., (ΛH)`q}
based on ΛH interleaved with the vectors of the Krylov sequence {Λq, Λ2q, ..., Λ`q}
based on Λ.

Then we have

DÃ =
1

2
κ(Λ, q, `)



2
−i 1
i 1

−i 1
i 1

. . .

−i 1
i 1


=:

1

2
κ(Λ, q, `)F.

The idea is to compute the QR decomposition of DÃ from a QR decomposition
of κ(Λ, q, `) by solving an inverse eigenproblem similar to the approach of Reichel,
Ammar, and Gragg in [17]. For this we need the following lemma which is a
consequence of Theorem 2.12 and Theorem 3.2 in [7].

Lemma 1. Given n distinct complex numbers {λk}nk=1 on the unit circle and asso-
ciated positive weights {ν2

k}nk=1, there is a unique unreduced n×n Schur parameter
pencil Go − λGe (with positive complementary Schur parameters) and unique uni-
tary matrices Q and P such that

QHe1 = σ−1
0 [ν1, ..., νn]T ,

Q(Λ− λI)P = Go − λGe,
Λ = diag(λ1, ..., λn),

where σ0 = (
∑n
k=1 ν

2
k)

1
2 .

The lemma shows that the reduction of Λ to an unreduced Schur parameter
pencil Go − λGe = QH(Λ − λI)P is unique if the first column of Q is given.
Choosing

Qe1 = σ−1
0 q, σ0 = ||q||2,

and using

Λk = (QGoG
H
e Q

H)k = Q(GoG
H
e )kQH ,

we get

Λkq = σ0Q(GoG
H
e )ke1 and (ΛH)kq = σ0Q(GeG

H
o )ke1.
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That is

κ(Λ, q, `) = σ0Q[e1, GoG
H
e e1, GeG

H
o e1, (GoG

H
e )2e1, ..., (GoG

H
e )`e1, (GeG

H
o )`e1]

= σ0Qκ(GoG
H
e , e1, `) =: σ0QR.

As can be seen, R is an m×n upper triangular matrix whose diagonal elements are
products of the complementary Schur parameters. Therefore the upper n×n block
of R is nonsingular with positive diagonal elements Rii = σ1 · · ·σi−1. Moreover

R1,2i = R1,2i+1

R2i,2i+1 = −σ1 · · ·σ2i−1γ2i

R2i+1,2i+2 = −σ1 · · ·σ2iγ2i+1

 , i = 1, ..., `.

Thus we have DÃ = σ0

2 QRF with RF =

2 2Im(R12) 2Re(R12) 2Im(R14) 2Re(R14) · · · 2Im(R1,2`) 2Re(R1,2`)
0 i(R23 −R22) R23 +R22 i(R25 −R24) R25 +R24 · · · i(R2,2`+1 −R2,2`) R2,2`+1 +R2,2`

0 iR33 R33 i(R35 −R34) R35 +R34 · · · i(R3,2`+1 −R3,2`) R3,2`+1 +R3,2`

0 0 0 i(R45 −R44) R45 +R44 · · · i(R4,2`+1 −R4,2`) R4,2`+1 +R4,2`

0 0 0 iR55 R55 · · · i(R5,2`+1 −R5,2`) R5,2`+1 +R5,2`

..

.
..
.

..

.
..
.

..

.
..
.

..

.
...

...
...

...
... i(R2`,2`+1 −R2`,2`) R2`,2`+1 +R2`,2`

..

.
..
.

..

.
..
.

..

. iR2`+1,2`+1 R2`+1,2`+1

0 0 0 0 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 0 · · · 0 0



.

In order to get a unique “skinny”, real-valued QR decomposition of DÃ from
the above, 2× 2 blocks of the form

σ1 · · ·σ2j−1

(
−i(1 + γ2j) (1− γ2j)

iσ2j σ2j

)
have to be transformed to upper triangular form with positive diagonal elements.
Choosing x2j = σ2

2j+|1+γ2j|2 ∈ R, s2j = σ2j/
√
x2j ∈ R and c2j = (1+γ2j)/

√
x2j ∈

C we get

σ1 · · ·σ2j−1

(
−i

1

)(
−c2j s2j

s2j c2j

)(
−i(1 + γ2j) (1− γ2j)

iσ2j σ2j

)
= 2(σ2

2j + |1 + γ2j |2)−
1
2 σ1 · · ·σ2j−1

(
(1 +Re(γ2j)) Im(γ2j)

0 σ2j

)
and with

C2k = diag(I2k−1,

[
ic2k −is2k

s2k c2k

]
, Im−2k−1),

Ce = C2C4 · · · C2` ∈ Cm×m

we obtain CeRF = R̃, such that R̃ is an m×n upper triangular matrix with positive

diagonal elements. Let Q̃ = QCHe . Then a QR decomposition of DÃ is given by

DÃ =
σ0

2
Q̃R̃ =

σ0

2
Q̃1R̃1
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where Q̃1 are the first n columns of Q̃ and R̃1 is the upper n×n block of R̃. Since R̃
has positive diagonal elements, this “skinny” QR decomposition has to be unique.

Therefore Q̃1 and R̃1 are real-valued matrices with Q̃1 ∈ Rm×n and R̃1 ∈ Rn×n.
The minimum norm solution t̃ of the least-squares problem (4) is obtained by

t̃ = 2σ−1
0 R̃−1

1 Q̃H1 Df̂.

In order to solve the trigonometric approximation problem via the approach
discussed here, we have to solve the inverse eigenvalue problem QH(Λ − λI)Q =
Go−ΛGe. In [11, 12] different methods for solving this problem are discussed: the
Stieltjes-like procedure for orthogonal Laurent polynomials, the generalized Arnoldi
procedure for unitary diagonal matrix pencils, and the algorithm for solving the
inverse eigenvalue problem for Schur parameter pencils. Each of these methods
requires O(m2) arithmetic operations to compute Q, the Schur parameters γ1, ...,
γm, and the complementary Schur parameters σ1, ..., σm−1. As only the first n

columns of Q̃ (and Q) are required, these methods can be stopped after n steps
without solving the entire inverse eigenvalue problem. Simple modifications of these
algorithms yield O(mn) algorithms to compute the first n−1 Schur parameters and

to compute Q̃H1 Df̂ = CHe QH1 Df̂ . The solution of (4)

||D(f̂ − t̂)||2 = ||Df̂ −DÃt̃||2 = ||Q̃HDf̂ − σ0

2
R̃t̂||2

is now obtained by computing

2σ−1
0 R̃−1(Q̃HDf̂).

As R̃ = CeRF and F and Ce are known and easily invertible, we have to invert the
upper n×n block ofR = κ(GoG

H
e , e1, `). In [11] two O(n2) algorithms are developed

to invert R = κ(GoG
H
e , e1, `), that is to compute S = [s1, s2, ..., sn] ∈ Rn×n with

RS = I. Numerical experiments show that the following of the two algorithms
yields better results.

Algorithm 1
algorithm to invert κ(GoG

H
e , e1, k)

input : N = 2k+1, {γj}Nj=1, {σj}Nj=1

output : S = [s1s2...sN ] with κ(GoGHe , e1, k)S = I
t1 = e1, s1 = t1
for j = 1, 2, ...,N − 1

tj+1 = σ−1
j (Jtj + γj Ĩjtj)

if j+1 even

then sj+1 = Î−1
j+1tj+1

else sj+1 = Î−1
j+1tj+1

end if

end for

where

J = [e2, e3, ..., eN , 0],

Ĩj = [ej , ej−1, ..., e2, e1, ej+1, ..., eN ],

Î−1
2j+1 = [e2j , e2j−2, e2j−4, ..., e4, e2, e1, e3, ..., e2j−1, e2j+1, e2j+2, ..., eN ],

Î−1
2j = [e2j−1, e2j−3, e2j−5, ..., e3, e1, e2, e4, ..., e2j−2, e2j , e2j+1, ..., eN ].
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This algorithm was obtained by the observation that s2k is a permutation of the
2kth column of the inverse of the Krylov matrix K(H, e1, 2`) and s2k+1 is a permu-
tation of the (2k + 1)st column of the inverse of the Krylov matrix K(H, e1, 2`) =

K(H, e1, 2`) :

[e1, He1, H
2e1, ..., H

2`e1]Î2ks2k = e2k,

[e1, He1, H
2
e1, ..., H

2`
e1]Î2k+1s2k+1 = e2k+1.

Since (K(H, e1, 2`))
HK(H, e1, 2`) is a Toeplitz matrix, the inverse T = [t1, ..., tn] of

K(H, e1, 2`) can be computed by a simple modification of the Levinson algorithm

yielding t1 = e1, tj+1 = σ−1
j (Jtj + γj Ĩjtj).

3. Computation of Q̃1

In this section algorithms for computing Q̃1 are developed which use only real
arithmetic and require merely O(mn) arithmetic operations. Observing the effect

of the transformation Q̃1 to the real and imaginary part of Λ = C + iS, C =
diag(cos θ1, ..., cos θm), S = diag(sin θ1, ..., sin θm) we obtain

Q̃T1CQ̃1 = X,

Q̃T1 SQ̃1 = Y,

Q̃1e1 = σ−1
0 (ω1, ..., ωm)T ,

where Q̃1 ∈ Rm×n, X is a (2` + 1) × (2` + 1) symmetric pentadiagonal matrix of
the form 

x x ⊕
x x x ⊕
⊕ x x x ⊕
⊕ x x x ⊕
⊕ x x x ⊕

. . .
. . .

. . .
. . .

. . .

⊕ x x x ⊕
⊕ x x x

⊕ x x


,

and Y is a (2`+ 1)× (2`+ 1) symmetric bordered block tridiagonal matrix of the
form 

x ⊕
⊕ x x x 	

x x x x
x x x x x 	
	 x x x x x

x x x x x 	
	 x x x x x

. . .
. . .

. . .

x x x x x 	
	 x x x x x

x x x x
	 x x x



.(5)
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Here x denotes any real-valued, ⊕ any positive and 	 any negative matrix element.
The elements of the second subdiagonal of X are strictly positive, the elements of
the third subdiagonal of Y are less than or equal to zero.

This observation motivates the following theorem.

Theorem 1. Let n = 2`+ 1 < m. Let C, S ∈ Rm×m be symmetric matrices with
C2 +S2 = I and CS = SC. Let u = (ω1, ..., ωm)T ∈ Rm with uTu = 1. Then there

exists a unique m× n matrix Q̂ with orthonormal columns such that

Q̂TCQ̂ = X,

Q̂TSQ̂ = Y,

Q̂e1 = u,

where X is a symmetric pentadiagonal matrix with xj+2,j > 0, and Y is a symmetric
matrix of the desired form (5) with y21 > 0, y2j+3,2j < 0 and y2j+2,2j−1 = 0.

Proof. See proofs of Theorem 3 and Theorem 4 in [11].

The existence proof in [11] constructs the matrices Q̃1, X, and Y columnwise in
a Lanczos-like style from the equations

Cq̃j = Q̃1xj ,

Sq̃j = Q̃1yj.

The first column of Q̃1 is given, the second column is found using the equation

Sq̃1 = Q̃1y1. The subsequent columns of Q̃1 can be computed using only the

equation Cq̃j = Q̃1xj . This construction leads to an O(mn) algorithm for the

computation of Q̃1, X, and Y . A problem (as for every Lanczos-like algorithm) is

the loss of orthogonality between the columns of Q̃1.

In the following a different algorithm for computing Q̃,X, and Y is developed,
which builds up the matrices X and Y successively by adding two new triplets
(cos θ2k, sin θ2k, ω2k) and (cos θ2k+1, sin θ2k+1, ω2k+1) at a time (similar to the idea
of the IUQR-algorithm by Ammar, Gragg, and Reichel in [2]). That is, an orthog-

onal matrix Q̃ is constructed such that Q̃T e1 = q = σ−1
0 (ω1, ..., ωm)T and(

1

Q̃

)
(

(
δ qH

q C

)
− λ

(
δ 0H

0 S

)
)

(
1

Q̃H

)
=

(
δ eH1
e1 X

)
− λ

(
δ 0H

0 Y

)
,

where X is a symmetric, pentadiagonal matrix with positive entries on the second
subdiagonal and Y is a symmetric bordered block tridiagonal matrix of the form
(5).

For our constructions we will use the following notation (as given by Bunse-
Gerstner and Elsner in [7]). For 1 ≤ j < k ≤ n we denote by Q(j, k, z) the House-
holder transformation defined below, which eliminates the entries j + 1 through k
in the vector z ∈ Cn, i.e.,

Q(j, k, z)z ∈ span{e1, ..., ej, ek+1, ..., en}.
Here we have

Q(j, k, z) = I − 1

||v||22
2vvH ,
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where vH = (0, ..., 0, zj + (sign zj)α, zj+1, ...., zk, 0, ...., 0) and α = (
∑k
l=j |zl|2)

1
2 . If

z is real, then Q(j, k, z) is a real matrix. Note that

Q(j, k, z) = diag(Ij−1, Q̂, In−k).

For any M ∈ Cn×n the vectors consisting of the columns and rows of the matrix
are denoted by the corresponding small letter as m∗1, ...,m∗n and m1∗, ...,mn∗,
respectively. � denotes any matrix element not equal to zero, ⊗ denotes undesired
matrix elements.

In the following m = n is assumed for simplicity. For n = 3 the desired construc-
tion is trivial. Let n > 3, n odd. We are given u = (ω1, ..., ωn)T , C = diag(c1, ..., cn)
and S = diag(s1, ..., sn) where c2j + s2

j = 1. Assume that Q has been computed
such that Qu = (ω1, ω2, x, 0, ..., 0) = u′, and

C′ = QCQT =

 c1
c2

X ′

 , S′ = QSQT =

 s1

s2

Y ′

 ,

where X ′ and Y ′ are (n−2)×(n−2) matrices of the desired form. Let Q(1, n, u′) =
Q(1, 3, u′) = Q1, then we get Q1u

′ = (x, 0, ..., 0)T and

X(1) = Q1C
′QT1 =



x x x ⊗ ⊗
x x x x ⊗
x x x x x
⊗ x x x x x
⊗ ⊗ x x x x x

x x x x x

. . .
. . .

. . .
. . .

. . .

x x x x x
x x x x

x x x


,

Y(1) = Q1S
′QT1 =



x x ⊗ ⊗
x x x x
⊗ x x x
⊗ x x x x x x

x x x x
x x x x x x
x x x x x x

. . .
. . .

. . .
. . .

. . .
. . .

x x x x x x
x x x x x x

x x x x
x x x x


.

Now a sequence of similarity transformation is performed to transform X(1) and
Y(1) to matrices of the desired form. The first two steps are straightforward. Due to
the desired form of the first columns/rows of X and Y , first we have to transform
the first column/row of Y(1) to the desired form, then the first column/row of the
X-matrix. Determine Q(2, n, (Y(1))∗1) = Q(2, 4, (Y(1))∗1) = Q2 and transform X(1)
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and Y(1):

X(2) = Q2X(1)Q
T
2 =



x x x ⊗ ⊗
x x x x ⊗ ⊗
x x x x x ⊗
⊗ x x x x x
⊗ ⊗ x x x x x
⊗ ⊗ x x x x x

x x x x x

. . .
. . .

. . .
. . .

. . .


,

Y(2) = Q2Y(1)Q
T
2 =



x � 0 0
� x x x x ⊗ ⊗
0 x x x x ⊗ ⊗
0 x x x x x x

x x x x x x
⊗ ⊗ x x x x x x
⊗ ⊗ x x x x x x

x x x x x x
x x x x x x

. . .
. . .

. . .
. . .

. . .
. . .


.

Next choose Q(3, n, (X(2))∗1) = Q(3, 5, (X(2))∗1) = Q3 to bring the first col-
umn/row of X(2) to the desired form

X(3) = Q3X(2)Q
T
3 =



x x � 0 0
x x x x ⊗ ⊗
� x x x x ⊗ ⊗
0 x x x x x ⊗
0 ⊗ x x x x x
⊗ ⊗ x x x x x
⊗ ⊗ x x x x x

x x x x x

. . .
. . .

. . .
. . .

. . .


,

Y(3) = Q3Y(2)Q
T
3 =



x �
� x x x x ⊗ ⊗

x x x x ⊗ ⊗
x x x x x x
x x x x x x
⊗ ⊗ x x x x x x
⊗ ⊗ x x x x x x

x x x x x x
x x x x x x

. . .
. . .

. . .
. . .

. . .
. . .


.

Now different ways to further reduce X(3) and Y(3) to the desired form are possible.

One possibility is (analogous to the Lanczos-like algorithm to compute Q̃) to reduce
X(3) columnwise to the desired form. If Y(3) is transformed in the same way, then
Theorem 1 gives that Y(3) is transformed to the desired form as well. Numerical

tests solving (4) showed that such a method for computing Q̃ did not produce good
results for all test examples. This method which works essentially on X produced
very poor results if the values θk are chosen equidistant in the interval [0, π).

A different possibility to further reduce X(3) and Y(3) is described below. We
transform the second column ofX(3) to the desired form byQ4 =Q(4, n, (X(3))∗2) =
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Q(4, 6, (X(3))∗2)

X(4) = Q4X(3)Q
T
4 =



x x �
x x x � 0 0
� x x x x ⊗ ⊗
� x x x x ⊗ ⊗
0 x x x x x ⊗
0 ⊗ x x x x x
⊗ ⊗ x x x x x
⊗ ⊗ x x x x x

x x x x x
x x x x x

. . .
. . .

. . .
. . .

. . .


,

Y(4) = Q4Y(3)Q
T
4 =



x �
� x x x x ⊗ ⊗

x x x x ⊗ ⊗
x x x x x x ⊗ ⊗
x x x x x x ⊗ ⊗
⊗ ⊗ x x x x x x
⊗ ⊗ x x x x x x

⊗ ⊗ x x x x x x
⊗ ⊗ x x x x x x

x x x x x x
x x x x x x

. . .
. . .

. . .
. . .

. . .
. . .


.

Subsequently the second column of Y(4) is transform to the desired form by Q5 =
Q(5, n, (Y(4))∗2) = Q(5, 7, (Y(4))∗2)

X(5) = Q5X(4)Q
T
5 =



x x �
x x x �
� x x x x ⊗ ⊗
� x x x x ⊗ ⊗

x x x x x ⊗ ⊗
⊗ x x x x x ⊗
⊗ ⊗ x x x x x
⊗ ⊗ x x x x x
⊗ ⊗ x x x x x

x x x x x
x x x x x

. . .
. . .

. . .
. . .

. . .


,

Y(5) = Q5Y(4)Q
T
5 =



x �
� x x x � 0 0

x x x x ⊗ ⊗
x x x x x x ⊗ ⊗
� x x x x x ⊗ ⊗
0 ⊗ x x x x x x
0 ⊗ x x x x x x

⊗ ⊗ x x x x x x
⊗ ⊗ x x x x x x

x x x x x x
x x x x x x

. . .
. . .

. . .
. . .

. . .
. . .


.
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As C + iS is unitary, Q5Q4Q3Q2Q1Q(C + iS)QTQT1 Q
T
2 Q

T
3 Q

T
4 Q

T
5 = X(5) + iY(5) =

Z(5) is unitary; that is Z(5)Z
H
(5) = I and especially

∑n
k=1(Z(5))1k(Z(5))6k

=

(Z(5))13(Z(5))63
= 0 as well as

∑n
k=1(Z(5))1k(Z(5))7k

= (Z(5))13(Z(5))73
= 0.

From (Z(5))13 = (X(5))13 = (X(3))13 6= 0, we get (Z(5))63 = (Z(5))73 = 0. Thus we
obtain

X(5) =



x x �
x x x �
� x x x x
� x x x x ⊗ ⊗

x x x x x ⊗ ⊗
x x x x x ⊗
⊗ x x x x x
⊗ ⊗ x x x x x
⊗ ⊗ x x x x x

x x x x x
. . .

. . .
. . .

. . .
. . .



,

Y(5) =



x �
� x x x �

x x x x
x x x x x x ⊗ ⊗
� x x x x x ⊗ ⊗

x x x x x x
x x x x x x
⊗ ⊗ x x x x x x
⊗ ⊗ x x x x x x

x x x x x x
. . .

. . .
. . .

. . .
. . .

. . .



;

the third columns/rows of X(5) and Y(5) are in the desired form. Choosing

Q6 = Q(6, 8, (X(5))∗4), X(6) = Q6X(5)Q
T
6 , Y(6) = Q6Y(5)Q

T
6 ,

and

Q7 = diag(I6,−1, In−7)Q(7, 9, (Y(6))∗4), X(7) = Q7X(6)Q
T
7 , Y(7) = Q7Y(6)Q

T
7 ,

the fourth columns/rows of X(5) and Y(5) can be transformed to the desired form.
As above we can argue that the fifth columns/rows ofX(7) and Y(7) are in the desired
form. Now we have the same situation as after the construction of X(5), Y(5), solely
the undesired elements are found 2 rows and columns further down. Therefore these
undesired elements can be chased down along the diagonal analogous to the last
two steps. This gives rise to the following sequence of similarity transformations
to add two new triplets (cos θ2k, sin θ2k, ω2k), (cos θ2k+1, sin θ2k+1, ω2k+1) to X ′ and
Y ′.
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Algorithm 2
IUQR-like algorithm to add two new triplets (cos θ2k, sin θ2k, ω2k),

(cos θ2k+1, sin θ2k+1, ω2k+1) to X ′ and Y ′

Q1 = Q(1, 3, u′), X = Q1C′QT1 , Y = Q1S′QT1
Q2 = Q(2, 4, Y∗1), X = Q2XQT2 , Y = Q2Y QT2
Q3 = Q(3, 5,X∗1), X = Q3XQT3 , Y = Q3Y QT3
for j = 4, ..., n− 2

if j even
then Qj = Q(j, j + 2, X∗,j−2)
else Qj = Q(j, j + 2, Y∗,j−3)
end if
X = QjXQTj , Y = QjY QTj

end for
Qn−1 = Q(n− 1, n,X∗,n−3), X = Qn−1XQTn−1, Y = Qn−1Y QTn−1

if y21 < 0
then Qn+1 = diag(1,−1, In−2), X = Qn+1XQTn+1, Y = Qn+1Y QTn+1

end if
for j = 3, ..., n

if Xj,j−2 < 0

then Qn+j = diag(Ij−1,−1, In−j), X = Qn+jXQTn+j , Y = Qn+jY QTn+j

end if

end for

The last statements of the algorithm ensure that

y21 > 0

xk,k−2 > 0 for k ∈ {3, 4, 6, 8, ..., n}.

Theorem 1 gives

yk,k−3 > 0 for k ∈ {5, 7, 9, ..., n}.
The given algorithm can easily be modified to an O(mn) algorithm for computing

Q̃, X , and Y from {θk}mk=1 and {ωk}mk=1. If m > n = 2`+ 1, it should be observed
that only the relevant n × n block in X and Y is required. For even n only one
new pair of data has to be added in the last step; the transformation matrices Qj
reduce to Givens rotations. For more details and the modified algorithm see [11].

Numerical tests solving the trigonometric approximation problem showed that

this method for computing Q̃ did not produce good results for all test examples.
Choosing the θk equidistant in [0, π) we obtain good results. But for θk equidistant
in [0, 2π) this method does not work very well.

A detailed analysis of the method shows that in each step matrices of the form

Xk =


xk+2,k xk+2,k+1

xk+3,k xk+3,k+1

xk+4,k xk+4,k+1

0 xk+5,k+1

 , Yk =


yk+2,k yk+2,k+1

yk+3,k yk+3,k+1

yk+4,k yk+4,k+1

yk+5,k yk+5,k+1


are transformed to 

x x
0 x
0 0
0 0

 ,


y y
y y
0 0
0 0

 .
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In our method, the first columns of Xk and Yk are transformed to the desired form.
Theorem 1 shows that the second columns of Xk and Yk also have the desired
form. Implicitly the fact was used that the two second columns of Xk and Yk
are linearly dependent on the two first columns. Because of rounding errors the
linear dependency is lost after only a few steps of the algorithm. The theoretically
generated zeros in Xk and Yk are affected with increasing rounding errors.

Numerical tests suggest that the dissimilar treatment of the four column vectors
is the main reason for the increasing rounding errors. A method that uses all four
vectors for the computation of the desired transformation could perhaps solve this
problem (or at least diminish it). As the four vectors

xk+2,k

xk+3,k

xk+4,k

0

 ,


xk+2,k+1

xk+3,k+1

xk+4,k+1

xk+5,k+1

 ,


yk+2,k

yk+3,k

yk+4,k

yk+5,k

 ,


yk+2,k+1

yk+3,k+1

yk+4,k+1

yk+5,k+1


span a two dimensional subspace of R4, the matrix

Mk =


xk+2,k xk+2,k+1 yk+2,k yk+2,k+1

xk+3,k xk+3,k+1 yk+3,k yk+3,k+1

xk+4,k xk+4,k+1 yk+4,k yk+4,k+1

0 xk+5,k+1 yk+5,k yk+5,k+1


has rank 2. Thus Mk has only 2 (nonzero) singular values σ1 and σ2. The compu-
tation of an SVD of Mk requires information of all 4 column vectors. Therefore the
idea is to compute the desired transformation by an SVD of Mk. From the SVD
Mk = UkΣkVk with Uk, Vk ∈ R4×4 unitary and Σk = diag(σ1, σ2, 0, 0) ∈ R4×4 we
obtain

UTk Mk = ΣkVk =


x x x x
x x x x
0 0 0 0
0 0 0 0

 .

A Givens rotation to eliminate the (2,1) element of UTk Mk transforms this to the
desired form 

x x x x
0 x x x
0 0 0 0
0 0 0 0

 .

Numerical tests (see Section 5) showed that this computational approach of the
here developed method for the trigonometric approximation problem produces con-
sistently accurate results similar to those of the method by Ammar, Gragg, und
Reichel.

A different way of computing the desired transformation using all four column
vectors is the use of the rank-revealing QR decomposition of Mk [8]. With this
approach the here developed method produces slightly poorer results than with the
SVD approach. As the operation count for an SVD of a 4× 4 matrix is not much
higher than for the rank-revealing QR decomposition, all tests in Section 5 were
done using the SVD approach.
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4. Computation of R̃−1
1

In this section an algorithm for inverting the upper n×n block of R̃ is developed
which uses only real arithmetic and requires merely O(n2) arithmetic operations.
From Section 2 we have

R̃ = CeRF ∈ Rm×n with n = 2`+ 1,

R = κ(GoG
H
e , e1, `) ∈ Cm×n,

F = diag(2,K,K, ...,K) ∈ Cn×n,

K =

(
−i 1
i 1

)
,

Ce = C2C4 · · · C2l ∈ Cm×m,

C2k = diag(I2k−1,

[
ic2k −is2k

s2k c2k

]
, Im−2k−1).

From Ce(GoGHe )k = (CeGoCTe )kCe and Ce(GeGHo )k = (CeGoCTe )
k
Ce for 1 ≤ k ≤ `

follows

CeR = Ce[e1, GoG
H
e e1, GeG

H
o e1, (GoG

H
e )2e1, (GeG

H
o )2e1, ..., (GoG

H
e )`, (GeG

H
o )`e1]

= [e1, CeGoCTe e1, (CeGoCTe )e1, ..., (CeGoCTe )`e1, (CeGoCTe )`e1]

= κ(CeGoCTe , e1, `),

where κ(CeGoCTe , e1, `) is an upper block triangular matrix of the form

(
Υ
0

)
=



x x x x x x x · · · x x
x x x x x x · · · x x
x x x x x x · · · x x

x x x x · · · x x
x x x x · · · x x

x x · · · x x
x x · · · x x

. . .
...

...
x x
x x
0 0
...

...
0 0


with Υ = κ(Ce,2`Go,2`+1CTe,2`, e1, `).

Let S = [s1, s2, ..., s2l+1] ∈ Rn×n be the inverse of the upper triangular matrix

ΥF , that is of the upper n × n block of R̃. Then the vectors sk are the solutions
of the equations ΥFsk = ek for k = 1, ..., n. Noting that the last n− k columns of
ΥF have no influence on the solution of these equations since the last n− k entries
in sk are zero, we have to solve

[e1, (CeGoCTe )e1, (CeGoCTe )e1, ..., (CeGoCTe )ke1, (CeGoCTe )ke1, ∗]Fs2k = e2k,

[e1, (CeGoCTe )e1, (CeGoCTe )e1, ..., (CeGoCTe )ke1, (CeGoCTe )ke1, ∗]Fs2k+1 = e2k+1.
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Tedious calculation yields (for a detailed derivation see [11]) for k = 1, 2, ..., `− 1

s2k+2 = x−1
2k+2,2k[(

1

2
Pk − x2k,2kI)s2k − x2k−2,2ks2k−2 − x2k−1,2ks2k−1

− x2k+1,2ks2k+1],

s2k+3 = x−1
2k+3,2k+1[(

1

2
Pk − x2k+1,2k+1I)s2k+1 − x2k−1,2k+1s2k−1 − x2k,2k+1s2k

− x2k+2,2k+1s2k+2]

where the relevant first 2k + 1 columns of Pk are given by:

Pke1 = 2e3,

Pke2 = e4,

Pkej = ej−2 + ej+2, j = 3, 4, ..., 2k + 1.

If s1, s2, s3 are known, then s4, s5, ..., sn can be computed from the above formulae.
For s1, s2, s3 we have

[e1, (CeGoCTe )e1, (CeGoCTe )e1, ∗]F [s1, s2, s3] = [e1, e2, e3]

or

[2e1, 2Y e1, 2Xe1, ∗][s1, s2, s3] = [e1, e2, e3].

This is equivalent to

2

 1 y11 x11

0 y21 x21

0 0 x31

 s11 s21 s31

0 s22 s32

0 0 s33

 =

 1 0 0
0 1 0
0 0 1

 .

Thus s1, s2, s3 can be computed directly from the above equation. We obtain the

following O(n2) algorithm for computing the inverse of the upper n×n block of R̃.

Algorithm 3

algorithm for inverting the upper n× n block of R̃
input : X, y11, y21

output : S = [s1, s2, ..., s2l+1] with R̃1S = I

s1 = 1
2
e1

s2 = (2y21)−1(−y11e1 + e2)

s3 = (2x31)−1(−y−1
21 x21e2 + e3 − (y−1

21 y11x21 + x11)e1)

s4 = x−1
42 [( 1

2
P1 − x22I)s2 − x12s1 − x32s3]

for k = 5, 6, ...,2l + 1
if k even
then j := (k − 2)/2
else j := (k − 3)/2
end if
sk = x−1

k,k−2[( 1
2
Pj − xk−2,k−2I)sk−2 − xk−4,k−2sk−4 − xk−3,k−2sk−3

−xk−1,k−2sk−1]

end for

5. Numerical results

We present some numerical examples that compare the accuracy of the following
methods for solving the trigonometric approximation problem (2):
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- AGR : the algorithm proposed in [17] as sketched in the introduction. The
least-squares problem (3) ||DAc−Dg||2 = min is solved via QR decomposition of
DA, where the desired Q-factor of the QR decomposition is computed by an inverse
unitary Hessenberg eigenvalue problem and the inverse of the upper square subblock
of R is computed by an algorithm closely related to the Levinson algorithm (with
complex arithmetic).

- ver2.1 : the algorithm proposed in [11]. The least-squares problem (4)

||Df̂ − DÃt̃||2 = min is solved via QR decomposition of DÃ, where the desired
Q-factor of the QR decomposition is computed by an inverse eigenvalue problem
for Schur parameter pencils [11, 12] and the inverse of the upper square subblock
of R is computed by Algorithm 1 (with complex arithmetic).

- ver4.1 : the algorithm proposed in [11]. The least-squares problem (4)

||Df̂ −DÃt̃||2 = min is solved via QR decomposition of DÃ, where the desired Q-
factor of the QR decomposition is computed by simultaneous reduction of the real
and imaginary part of Λ to a compact form (to X and Y ) as discussed in Section
3 (using the SVD approach) and the inverse of the upper square subblock of R is
computed by Algorithm 3 (with real arithmetic).

- linpack : The least-squares problem (4) ||Df̂ − DÃt̃||2 = min is solved via

the explicit formation of the matrix DÃ and the use of the LINPACK [10] routines
sqrdc and sqrsl (with real arithmetic)

For comparison of accuracy we compute the solution t̃d of the system
min||DÃt̃−Df̃ ||2 in double precision using the NAG routine F04AMF. The figures
display the relative error ||t̃− t̃d||2/||t̃d||2 where t̃ is the coefficient vector computed
in single precision by the method under consideration. Each graph displays the er-
rors for m = 50 and increasing values of n. The arguments of the nodes are either
equispaced in the interval [0, π), [0, 3/2π) or [0, 2π) or the arguments are randomly
generated uniformly distributed numbers in [0, 2π). The weights are all equal to

one, the elements of the real vector f̃ are randomly generated uniformly distributed
numbers in [−5, 5].

A comparison of the methods AGR, linpack and ver2.1 is given in Figure 1,
a comparison of the methods AGR, linpack and ver4.1 is given in Figure 2. The
graphs at the top of Figure 1 and Figure 2 display the relative errors in the coefficient
vectors for equispaced nodes in intervals smaller than 2π. As n increases, and
the problem becomes more ill conditioned, the LINPACK routines are the first
to produce inaccurate results. ver2.1 produces errors that are somewhat smaller
than AGR, while ver4.1 produces errors that are about the same as AGR. The
graphs at the bottom of Figure 1 and Figure 2 display the relative error when
the arguments are equispaced in [0, 2π) and when the arguments are randomly
generated uniformly distributed numbers in [0, 2π). In the first case the LINPACK
routines and ver2.1 produce smaller errors than AGR, while ver4.1 produces slightly
larger errors. Note that in this case we are computing the Fourier transform and
thus the FFT is a better method for solving this problem. When the arguments
are randomly generated uniformly distributed points in [0, 2π) the least-squares
problem is relatively well conditioned and the algorithms AGR, ver2.1 and ver4.1
yield roughly the same accuracy as n gets close to m.

We obtained similar results to those in Figure 1 and Figure 2 with other choices
for the nodes and the weights. For more numerical examples and a more detailed
discussion see [11].
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—— AGR
− · − ver2.1
· · · · · · linpack
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Figure 1
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—— AGR
− · − ver4.1
· · · · · · linpack
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The numerical experiments have shown that generally the method ver2.1 pro-
duces more accurate results than the method AGR. On the other hand, method
ver2.1 requires about 3 times as much time to solve the problem than method
AGR. For the discussed examples the method linpack requires more time than the
method AGR, and is the method that produces inaccurate results first. The method
ver4.1 uses only real arithmetic (as opposed to the methods AGR and ver2.1 which
use complex arithmetic). The relative errors in the coefficient vector produced by
ver4.1 are about the same as those produced by AGR. AGR, ver2.1 and ver4.1 are
algorithms to solve the trigonometric approximation problem in O(mn) arithmetic
operations, while the method linpack requires O(mn2) operations.

6. Final remarks

This note is a partial summary of [11].
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