TAME AND WILD KERNELS OF QUADRATIC IMAGINARY NUMBER FIELDS

JERZY BROWKIN AND HERBERT GANGL

Abstract

For all quadratic imaginary number fields F of discriminant $d>-5000$, we give the conjectural value of the order of Milnor's group (the tame kernel) $K_{2} O_{F}$, where O_{F} is the ring of integers of F. Assuming that the order is correct, we determine the structure of the group $K_{2} O_{F}$ and of its subgroup W_{F} (the wild kernel). It turns out that the odd part of the tame kernel is cyclic (with one exception, $d=-3387$).

1. Introduction

Assuming Lichtenbaum's conjecture one can compute conjectural values of orders of the tame kernels $K_{2} O_{F}$ of quadratic imaginary number fields F.

Since in general these orders are not very large, and there are several results known concerning the p-rank of $K_{2} O_{F}$ and of its subgroup W_{F} called the wild kernel, it is possible to determine the structure of these groups for the fields in question with discriminants $d>-5000$.

2. Notations

We use the following notation.

- $\quad F$ is a number field with r_{1} real and $2 r_{2}$ complex embeddings.
- $\zeta_{F}(s)$ is the Dedekind zeta function of F.
- O_{F} is the ring of integers of F.
- $K_{n} O_{F}$ is the nth Quillen K-group of O_{F}, and especially
- $K_{2} O_{F}$ is the Milnor group of O_{F} (the tame kernel).
- W_{F} is the Hilbert kernel of F (the wild kernel).
- e_{p} is the $p-\operatorname{rank}$ of $K_{2} O_{F}$, where p is a prime or $p=4$.
- w_{2} is the $2-\mathrm{rank}$ of W_{F}.
- $\quad w(F)$ is the number of roots of unity in F.
- $C l(O)$ is the class group of a Dedekind ring O.
- $R_{m}(F)$ is a "twisted" version of the m th Borel regulator (see [Bo1]), the "twisted" regulator map r_{m} being a map

$$
r_{m}: K_{2 m-1} O_{F} \rightarrow\left[(2 \pi i)^{m-1} \mathbb{R}\right]^{d_{m}}
$$

[^0]where $d_{m}=r_{2}$ for m even, and $d_{m}=r_{1}+r_{2}$ for odd $m>1\left(d_{m}\right.$ is just the order of vanishing of $\zeta_{F}(s)$ at $s=1-m$). The image of r_{m} is a lattice of covolume $R_{m}(F)$-it differs from Borel's original one essentially by a power of π ([Bo2]; there is also a shift $m \mapsto m+1$ compared to the original notation).

3. Computing the value $\# K_{2} O_{F}$

Borel proved that, up to a rational factor, $R_{m}(F)$ is equal to $\zeta_{F}^{*}(1-m)$, the first non-vanishing Taylor coefficient of $\zeta_{F}(s)$ at $s=1-m$. Lichtenbaum's conjecture [Li] (as modified by Borel [Bo1]) tries to interpret this rational factor and asks whether for all number fields and for any integer $m \geq 2$ there is a relation of the form

$$
\operatorname{res}_{s=1-m} \zeta_{F}(s)(s-1+m)^{-d_{m}(F)} \stackrel{?}{=} \pm \frac{\# K_{2 m-2}\left(O_{F}\right)}{\# K_{2 m-1}^{\mathrm{ind}}\left(O_{F}\right)_{\mathrm{tors}}} \cdot R_{m}(F)
$$

up to a power of 2 , where the subscript "tors" denotes the torsion part, "res" the residue, and "ind" the indecomposable part. $K_{2 m-2}\left(O_{F}\right)$ is known to be finite (Borel). There is some evidence for this conjecture, namely for $m=2$ and F totally-real abelian it has been proved (up to a power of 2) by Mazur and Wiles $[\mathrm{M}-\mathrm{W}]$ as a consequence of their proof of the main conjecture of Iwasawa theory (in this case $R_{2}(F)=1$, though).

Recently Kolster, Nguyen Quang Do and Fleckinger ([KNF], Theorem 6.4) have proved a modified version of the conjecture (also up to a power of 2) for all abelian fields F and $m \geq 2$. For imaginary quadratic fields F and $m=2$, their result is equivalent to the above formula.

In what follows we assume $m=2$ and F imaginary quadratic of discriminant d. In this case, the Lichtenbaum conjecture reads (using the functional equation for the zeta function and the fact that $\# K_{3}^{\text {ind }}\left(O_{F}\right)_{\text {tors }}$ is here always 24)

$$
\frac{3|d|^{3 / 2}}{\pi^{2} \cdot R_{2}(F)} \cdot \zeta_{F}(2) \stackrel{?}{=} \# K_{2}\left(O_{F}\right)
$$

up to a power of 2 .
Bloch [Bl] suggested and Suslin [Su] finally proved that Borel's regulator map can be given (at least rationally) in terms of the Bloch-Wigner dilogarithm $D_{2}(z)$ as a map on the Bloch group $\mathcal{B}(F)$; here $D_{2}(z)=\Im\left(L i_{2}(z)+\log |z| \log (1-z)\right)$, where $L i_{2}(z)=\sum_{n \geq 1} \frac{z^{n}}{n^{2}}$ is the classical dilogarithm function, defined for $|z|<1$ and analytically continued to $\mathbb{C}-[1, \infty)$, and $\mathcal{B}(F)$ is given in explicit form with generators and relations (cf. [Su]):

$$
\mathcal{B}(F)=\frac{\left\{\sum_{i} n_{i}\left[x_{i}\right] \mid \sum_{i} n_{i}\left(x_{i} \wedge\left(1-x_{i}\right)\right)=0 \in \bigwedge^{2} F^{\times}\right\}}{\left\langle\left.[x]-[y]+\left[\frac{y}{x}\right]-\left[\frac{1-y}{1-x}\right]+\left[\frac{1-y^{-1}}{1-x^{-1}}\right] \right\rvert\, x, y \in F^{\times}-\{1\}\right\rangle}
$$

The dilogarithm $D_{2}(z)$ maps $\mathcal{B}(F)$ into a lattice in \mathbb{R} whose covolume we denote by D_{2}^{F}. Thus, we can replace $R_{2}(F)$ in the formula above by D_{2}^{F} and still hope for the following equality to hold (up to a universal factor):

$$
\frac{3|d|^{3 / 2}}{\pi^{2} \cdot D_{2}^{F}} \cdot \zeta_{F}(2) \stackrel{?}{=} \# K_{2}\left(O_{F}\right)
$$

Note that in our formula we do not neglect powers of 2 .
The left hand side now can be computed numerically: we proceed by looking for elements $\xi \in \mathcal{B}(F)$ which are supported on exceptional S-units for some small
set S of primes in F, i.e. $\xi=\sum_{i} n_{i}\left[x_{i}\right]$ such that $\sum_{i} n_{i}\left(x_{i} \wedge\left(1-x_{i}\right)\right)=0$, and the principal ideals $\left(x_{i}\right)$ and $\left(1-x_{i}\right)$ are generated by S. The images $D_{2}(\xi)$ lie in a 1-dimensional lattice, therefore the numerically computed values should all be commensurable. The covolume $D_{2}^{F, S}$ of this lattice is an integral multiple of D_{2}^{F} (to be precise, the covolume that we actually get depends not only on S but also on the bounds that we impose on the valuations $v_{\mathcal{P}}\left(x_{i}\right)$ for $\mathcal{P} \in S$ in our search). If we have obtained hundreds of different values $D_{2}(\xi)$ there is a good chance that they already generate the correct lattice $D_{2}(\mathcal{B}(F))$ and give D_{2}^{F} exactly.

Our program, written in PARI [BBCO], performs the above calculations successively for an increasing set of primes and stops if the corresponding $D_{2}^{F, S}$ stabilizes, i.e. if the same covolume occurs for S and $S^{\prime} \supsetneqq S$.

The orders in the case of small discriminants have been determined by Tate [Ta] (for $|d| \leq 15)$, Skałba $[S k](d=-19,-20)$, and Qin [Q2], [Q3] $(d=-24,-35)$, and they coincide with ours. Furthermore, the entries of a former (shorter) table [Ga] were not only compatible with the structural theoretical results known at the time but even suggested several conjectures, most of which have been proved in the meantime ([B-92], [C-H], [Q1]).

Our approach is very similar to that of Grayson [Gr], only we don't have to restrict ourselves to class number one, and our program works even for quite large discriminants (e.g., for $F=\mathbb{Q}(\sqrt{-2000004})$ we obtain $\left.\# K_{2} O_{F}=4\right)$.

The program is freely available from the second author via e-mail, together with some remarks on the modification of the parameters.

4. Determining the structure

In order to establish the actual structure of the tame and wild kernel we apply the following results: let $d^{\prime}=d / \operatorname{gcd}(4, d)$.
(1) The index $i_{F}:=\left(K_{2} O_{F}: W_{F}\right)$ always divides 6 . More precisely,

$$
\begin{array}{llc}
2 \mid i_{F} & \text { iff } & d^{\prime} \equiv \pm 1(\bmod 8), \\
3 \mid i_{F} & \text { iff } & d \equiv-3(\bmod 9), \quad d \neq-3
\end{array}
$$

(See [B-82], Table 1.)
(2) The 2-rank of the tame and wild kernels can be computed easily:

$$
e_{2}= \begin{cases}t, & \text { if every odd prime divisor of } d \text { is } \equiv \pm 1 \quad(\bmod 8) \\ t-1, & \text { otherwise },\end{cases}
$$

where t is the number of odd prime divisors of d; and

$$
w_{2}= \begin{cases}e_{2}, & \text { if } d^{\prime} \not \equiv 1 \quad(\bmod 8) \\ e_{2}-1, & \text { otherwise }\end{cases}
$$

(See $[B-S]$, Theorem 4.)
(3) The 4-rank of the tame kernel can be easily determined using the results of [Q1], at least if the number of odd prime divisors of d does not exceed 3 .

The p-rank of $K_{2} O_{F}$, for odd p, is related to the p-rank of the class group of an appropriate number field as follows.
(4) Let $E_{3}=\mathbb{Q}(\sqrt{-3 d})$ and $e_{3}^{\prime}=3$-rank $C l\left(O_{E_{3}}\right)$. Then

$$
e_{3}=e_{3}^{\prime}, \quad \text { if } d \not \equiv-3 \quad(\bmod 9),
$$

$$
\max \left(1, e_{3}^{\prime}\right) \leq e_{3} \leq e_{3}^{\prime}+1, \quad \text { otherwise }
$$

(See [B-92], Theorem 5.6.)
(5) Let $E_{5}=\mathbb{Q}(\sqrt{5 d})$, and $e_{5}^{\prime}=5$-rank $C l\left(O_{E_{5}}\right)$. Then $e_{5} \leq e_{5}^{\prime}$. (See [B-92], Theorem 5.4.)
(6) For $p>5$, where p is a regular prime, let E_{p} be the maximal real subfield of the field $F\left(\zeta_{p}\right)$, and let $e_{p}^{\prime}=p$-rank $C l\left(O_{E_{p}}\right)$. Then $e_{p} \leq e_{p}^{\prime}$. (See [B-92], Theorem 5.4.)

5. Examples

As above, let $d^{\prime}=d / \operatorname{gcd}(4, d)$.

1) For $d=-644$, we have $\# K_{2} O_{F}=32$ (conjecturally), and $e_{2}=2, w_{2}=2$. Moreover $e_{4}=1$, since $644=4 \cdot 7 \cdot 23$, and $7 \equiv 23 \equiv 7(\bmod 8)$, see [Q1]. Finally, $\left(K_{2} O_{F}: W_{F}\right)=2$, since $d^{\prime}=-161 \equiv 7(\bmod 8)$ and $d \not \equiv-3(\bmod 9)$. It follows that

$$
K_{2} O_{F}=\mathbb{Z} / 2 \times \mathbb{Z} / 16 \quad \text { and } \quad W_{F}=\mathbb{Z} / 2 \times \mathbb{Z} / 8
$$

2) For $d=-255$ we have $\# K_{2} O_{F}=12$ (conjecturally). Moreover $e_{2}=2, w_{2}=1$, and $d \equiv-3(\bmod 9)$. Therefore

$$
K_{2} O_{F}=\mathbb{Z} / 2 \times \mathbb{Z} / 2 \times \mathbb{Z} / 3 \quad \text { and } \quad W_{F}=\mathbb{Z} / 2
$$

3) For $d=-759$, we have $\# K_{2} O_{F}=36$ (conjecturally), and $e_{2}=2, \quad w_{2}=1$, and $d \equiv-3(\bmod 9)$. Moreover, for

$$
E_{3}=\mathbb{Q}(\sqrt{3 d})=\mathbb{Q}(\sqrt{-253})
$$

we have 3-rank $\mathrm{Cl}\left(O_{E_{3}}\right)=0$. Therefore

$$
K_{2} O_{F}=\mathbb{Z} / 2 \times \mathbb{Z} / 2 \times \mathbb{Z} / 9 \quad \text { and } \quad W_{F}=\mathbb{Z} / 2 \times \mathbb{Z} / 3
$$

4) For $d=-2395$, we have $\# K_{2} O_{F}=25$ (conjecturally). Moreover, for $E_{5}=$ $\mathbb{Q}(\sqrt{5 d})=\mathbb{Q}(\sqrt{-479})$, we have $5-\operatorname{rank} C l\left(O_{E_{5}}\right)=1$. Therefore, using (5),

$$
K_{2} O_{F}=W_{F}=\mathbb{Z} / 25
$$

5) For $d=-1832$, we have $\# K_{2} O_{F}=49$ (conjecturally). The maximal real subfield E_{7} of the field $F\left(\zeta_{7}\right)=\mathbb{Q}\left(\sqrt{-d}, \zeta_{7}\right)$ is generated over \mathbb{Q} by a root of the polynomial

$$
f(x)=x^{6}+7 d x^{4}+14 d^{2} x^{2}+7 d^{3}
$$

In our case

$$
e_{7}^{\prime}=7-\operatorname{rank} C l\left(O_{E_{7}}\right)=1
$$

Therefore, in view of (6),

$$
K_{2} O_{F}=W_{F}=\mathbb{Z} / 49
$$

6. Description of the table

In the first column there is the negative discriminant d. The last two columns give the structure of the tame and the wild kernel of the corresponding field. In these columns a single number n denotes the cyclic group of order n, and a sequence $\left(n_{1}, n_{2}, \ldots\right)$ denotes the direct sum of cyclic groups of orders n_{1}, n_{2}, \ldots.

The last two columns contain correct results provided the conjectural value of $\# K_{2} O_{F}$ is correct.

Table 1. Table of tame and wild kernels for imaginary quadratic number fields of discriminant $d>-5000$ (conjectural values)

d	tame	wild	d	tame	wild	d	tame	wild
-3	1	1	-163	1	1	-328	2	2
-4	1	1	-164	4	2	-331	3	3
-7	2	1	-167	2	1	-335	2	1
-8	1	1	-168	2	2	-339	2	2
-11	1	1	-179	1	1	-340	2	2
-15	2	1	-183	$(2,3)$	1	-344	1	1
-19	1	1	-184	2	2	-347	1	1
-20	1	1	-187	2	2	-355	2	2
-23	2	1	-191	2	1	-356	4	2
-24	1	1	-195	$(2,2)$	$(2,2)$	-359	2	1
-31	2	1	-199	2	1	-367	$(2,3)$	3
-35	2	2	-203	2	2	-371	2	2
-39	$(2,3)$	1	-211	1	1	-372	$(2,3)$	2
-40	1	1	-212	1	1	-376	2	2
-43	1	1	-215	2	1	-379	1	1
-47	2	1	-219	$(4,3)$	4	-383	2	1
-51	2	2	-223	2	1	-388	8	4
-52	1	1	-227	1	1	-391	$(2,2)$	2
-55	2	1	-228	$(4,3)$	2	-395	2	2
-56	2	2	-231	$(2,2)$	2	-399	$(2,4,3)$	4
-59	1	1	-232	1	1	-403	2	2
-67	1	1	-235	2	2	-404	1	1
-68	8	4	-239	2	1	-407	2	1
-71	2	1	-244	1	1	-408	$(2,3)$	2
-79	2	1	-247	2	1	-411	2	2
-83	1	1	-248	2	2	-415	2	1
-84	$(2,3)$	2	-251	1	1	-419	3	3
-87	2	1	-255	$(2,2,3)$	2	-420	$(2,4)$	$(2,2)$
-88	1	1	-259	2	2	-424	1	1
-91	2	2	-260	4	2	-427	2	2
-95	2	1	-263	2	1	-431	2	1
-103	2	1	-264	$(2,3)$	2	-435	$(2,2,3)$	$(2,2)$
-104	1	1	-267	2	2	-436	1	1
-107	3	3	-271	2	1	-439	2	1
-111	$(2,3)$	1	-276	2	2	-440	2	2
-115	2	2	-280	2	2	-443	1	1
-116	1	1	-283	1	1	-447	2	1
-119	$(2,2)$	2	-287	$(2,2)$	2	-451	2	2
-120	$(2,3)$	2	-291	$(4,3)$	4	-452	8	4
-123	2	2	-292	4	2	-455	$(2,2)$	2
-127	2	1	-295	2	1	-456	2	2
-131	1	1	-296	1	1	-463	2	1
-132	4	2	-299	2	2	-467	1	1
-136	4	4	-303	$(2,11)$	11	-471	$(2,3)$	1
-139	1	1	-307	1	1	-472	5	5
-143	2	1	-308	2	2	-479	$(2,7)$	7
-148	1	1	-311	2	1	-483	$(2,2)$	$(2,2)$
-151	2	1	-312	2	2	-487	2	1
-152	1	1	-319	2	1	-488	1	1
-155	2	2	-323	4	4	-491	13	13
-159	2	1	-327	$(2,3)$	1	-499	1	1

Table 1. (Continued)

d	tame	wild
-503	$(2,3)$	3
-511	$(2,2)$	2
-515	2	2
-516	$(4,3)$	2
-519	2	1
-520	2	2
-523	1	1
-527	$(2,2)$	2
-532	2	2
-535	2	1
-536	1	1
-543	$(2,3)$	1
-547	1	1
-548	4	2
-551	2	1
-552	$(2,3)$	2
-555	$(2,2,7)$	$(2,2,7)$
-559	2	1
-563	1	1
-564	2	2
-568	2	2
-571	5	5
-579	$(4,3)$	4
-580	4	2
-583	$(2,17)$	17
-584	2	2
-587	1	1
-591	2	1
-595	$(2,2)$	$(2,2)$
-596	1	1
-599	2	1
-607	2	1
-611	2	2
-615	$(2,2,3)$	2
-616	2	2
-619	1	1
-623	$(2,2)$	2
-627	$(2,2)$	$(2,2)$
-628	1	1
-631	2	1
-632	2	2
-635	2	2
-643	3	3
-644	$(2,16)$	$(2,8)$
-647	2	1
-651	$(2,2,3)$	$(2,2)$
-655	2	1
-659	1	1
-660	$(2,2,3)$	$(2,2)$
-663	$(2,2)$	2
-664	1	1

d	tame	wild
-667	2	2
-671	2	1
-679	$(2,2,5)$	$(2,5)$
-680	2	2
-683	1	1
-687	$(2,3)$	1
-691	1	1
-692	1	1
-695	2	1
-696	$(2,3,7)$	$(2,7)$
-699	2	2
-703	$(2,37)$	37
-707	2	2
-708	4	2
-712	2	2
-715	$(2,2)$	$(2,2)$
-719	2	1
-723	$(4,3)$	4
-724	1	1
-727	2	1
-728	2	2
-731	4	4
-739	1	1
-740	4	2
-743	2	1
-744	2	2
-751	2	1
-755	$(2,41)$	$(2,41)$
-759	$(2,2,9)$	$(2,3)$
-760	2	2
-763	2	2
-767	2	1
-771	$(2,3)$	$(2,3)$
-772	8	4
-776	4	4
-779	2	2
-787	1	1
-788	1	1
-791	$(2,2)$	2
-795	$(2,2,3)$	$(2,2)$
-799	$(2,4)$	4
-803	2	2
-804	$(4,9)$	$(2,3)$
-807	2	1
-808	1	1
-8011	1	1
-8115	2	1
-815	4	4
-820	2	1
-823	2	2
-824	1	1
-827	1	

d	tame	wild
-831	$(2,3)$	1
-835	$(2,3)$	$(2,3)$
-836	4	2
-839	2	1
-840	$(2,2,3)$	$(2,2)$
-843	2	2
-851	2	2
-852	2	2
-856	1	1
-859	1	1
-863	$(2,3)$	3
-868	$(2,4)$	$(2,2)$
-871	2	1
-872	1	1
-879	$(2,5)$	5
-883	1	1
-884	4	4
-887	$(2,5)$	5
-888	2	2
-895	2	1
-899	2	2
-903	$(2,2,3)$	2
-904	4	4
-907	1	1
-911	2	1
-915	$(2,2)$	$(2,2)$
-916	1	1
-919	2	1
-920	2	2
-923	2	2
-932	$(4,5)$	$(2,5)$
-935	$(2,2)$	2
-939	$(4,3)$	4
-943	$(2,2)$	2
-947	1	1
-948	$(2,3)$	2
-951	2	1
-952	$(2,2)$	$(2,2)$
-955	2	2
-959	$(2,4)$	4
-964	8	4
-967	2	1
-971	5	5
-979	4	4
-983	2	1
-984	$(2,3)$	2
-987	$(2,2)$	$(2,2)$
-991	2	1
-995	2	2
-996	4	2
-1003	4	4

Table 1. (Continued)

d	tame	wild	d	tame	wild	d	tame	wild
-1007	(2, 3)	3	-1171	1	1	-1343	(2, 2)	2
-1011	$(4,3)$	4	-1172	1	1	-1347	2	2
-1012	2	2	-1187	7	7	-1348	16	8
-1015	$(2,2)$	2	-1191	$(2,27)$	9	-1351	(2, 4)	4
-1016	$(2,13)$	$(2,13)$	-1192	3	3	-1355	$(2,3)$	$(2,3)$
-1019	1	1	-1195	2	2	-1363	2	2
-1023	$(2,16)$	16	-1199	2	1	-1364	2	2
-1027	2	2	-1203	2	2	-1367	2	1
-1028	8	4	-1204	2	2	-1371	$(4,3,5)$	$(4,5)$
-1031	2	1	-1207	$(2,2)$	2	-1379	2	2
-1032	2	2	-1208	$(2,3)$	$(2,3)$	-1380	$(2,4,3)$	$(2,2)$
-1039	2	1	-1211	2	2	-1383	2	1
-1043	2	2	-1219	2	2	-1384	1	1
-1047	$(2,3)$	1	-1220	4	2	-1387	$(4,11)$	$(4,11)$
-1048	$(3,11)$	$(3,11)$	-1223	2	1	-1391	2	1
-1051	1	1	-1227	$(4,3)$	4	-1396	1	1
-1055	2	1	-1231	2	1	-1399	2	1
-1059	2	2	-1235	$(2,2,11)$	$(2,2,11)$	-1403	2	2
-1060	4	2	-1236	$(2,9)$	$(2,3)$	-1407	$(2,2,3)$	2
-1063	$(2,29)$	29	-1239	$(2,8)$	8	-1411	4	4
-1064	2	2	-1240	$(2,17)$	$(2,17)$	-1412	16	8
-1067	4	4	-1243	$(4,7)$	$(4,7)$	-1415	2	1
-1076	1	1	-1247	2	1	-1416	(2, 3)	2
-1079	2	1	-1252	4	2	-1419	$(2,2,9)$	$(2,2,9)$
-1087	$(2,3)$	3	-1255	2	1	-1423	2	(1
-1091	1	1	-1256	5	5	-1427	3	3
-1092	(2, 4, 3)	$(2,2)$	-1259	1	1	-1428	$(2,2)$	$(2,2)$
-1095	$(2,2)$	2	-1263	$(2,3)$	1	-1432	1	1
-1096	$(2,31)$	$(2,31)$	-1267	2	2	-1435	(2, 2)	$(2,2)$
-1099	2	,	-1268	1	1	-1439	2	1
-1103	$(2,5)$	5	-1271	$(2,2)$	2	-1443	$(2,4,3)$	$(2,4)$
-1108	1	1	-1272	$(2,9)$	$(2,3)$	-1447	,	1
-1111	2	1	-1279	2	1	-1448	3	3
-1112	5	5	-1283	5	5	-1451	1	1
-1115	2	2	-1284	4	2	-1455	$(2,2)$	2
-1119	$(2,3)$	1	-1288	$(2,4)$	(2, 4)	-1459	1	1
-1123	1	1	-1291	3	3	-1460	2	2
-1124	4	2	-1295	$(2,2)$	2	-1463	(2, 2)	2
-1128	$(2,3)$	2	-1299	$(8,3)$	8	-1464	2	2
-1131	$(2,2)$	$(2,2)$	-1303	2	1	-1471	$(2,7)$	7
-1135	$(2,7)$	7	-1304	1	1	-1479	$(2,2,3)$	2
-1139	4	4	-1307	1	1	-1480	2	2
-1140	(2, 2)	$(2,2)$	-1311	(2, 2)	2	-1483	1	1
-1144	2	2	-1315	2	2	-1487	$(2,5)$	5
-1147	2	2	-1316	(2, 4)	$(2,2)$	-1491	$(2,2)$	$(2,2)$
-1151	2	,	-1319	$(2,3)$	3	-1492	1	1
-1155	$(2,2,2,3)$	$(2,2,2)$	-1320	$(2,2,13)$	$(2,2,13)$	-1495	$(2,2,17)$	$(2,17)$
-1159	2	1	-1327	$(2,3)$	3	-1496	2	2
-1160	2	2	-1335	$(2,2,3)$	2	-1499	1	1
-1163	1	1	-1336	2	2	-1507	4	4
-1167	2	1	-1339	2	2	-1508	4	2

Table 1. (Continued)

d	tame	wild	d	tame	wild	d	tame	wild
-1511	2	1	-1671	2	1	-1839	$(2,3,5)$,
-1515	$(2,2,9)$	$(2,2,3)$	-1672	2	2	-1843	$(2,3)$	$(2,3)$
-1523	7	7	-1679	$(2,4)$	4	-1844	1	1
-1524	$(2,3)$	2	-1684	1	1	-1847	$(2,23)$	23
-1527	2	1	-1687	$(2,2)$	2	-1848	$(2,2,3)$	$(2,2)$
-1528	2	2	-1688	1	1	-1851	2	2
-1531	1	1	-1691	$(2,3)$	(2, 3)	-1855	$(2,2)$	2
-1535	2	1	-1695	$(2,2,3)$,	-1860	$(2,4)$	$(2,2)$
-1540	$(2,4)$	$(2,2)$	-1699	,	1	-1864	2	2
-1543	2	,	-1703	2	1	-1867	1	1
-1544	4	4	-1704	$(2,3)$	2	-1871	$(2,3)$	3
-1547	$(2,2,3)$	$(2,2,3)$	-1707	2	2	-1876	2	2
-1551	$(2,2,3)$,	-1711	2	1	-1879	$(2,3)$	3
-1555	,	2	-1716	(2, 2)	$(2,2)$	-1880	2	2
-1556	1	1	-1720	,	,	-1883	2	2
-1559	2	1	-1723	7	7	-1887	$(2,2)$	2
-1560	$(2,2,3)$	$(2,2)$	-1727	2	1	-1891	2	2
-1563	2	2	-1731	$(4,3)$	4	-1892	4	2
-1567	2	1	-1732	8	4	-1895	$(2,3)$	3
-1571	7	7	-1735	$(2,5)$	5	-1896	2	2
-1572	$(4,5)$	$(2,5)$	-1736	$(2,2,7)$	$(2,2,7)$	-1903	2	1
-1576	,	,	-1739	2	2	-1907	1	1
-1579	1	1	-1743	$(2,4)$	4	-1912	2	2
-1583	$(2,27)$	27	-1747	1	1	-1915	2	2
-1588	3	3	-1748	2	2	-1919	2	1
-1591	2	1	-1751	(2, 2)	2	-1923	2	2
-1592	2	2	-1752	4	4	-1924	4	2
-1595	$(2,2)$	$(2,2)$	-1759	2	1	-1927	$(2,2)$	2
-1599	$(2,2)$	2	-1763	4	4	-1928	4	4
-1603	,	2	-1767	$(2,2,3)$	2	-1931	1	1
-1604	8	4	-1768	4	4	-1939	2	2
-1607	2	1	-1771	(2, 2)	$(2,2)$	-1940	2	2
-1608	2	2	-1779	2	2	-1943	2	1
-1615	$(2,2)$	2	-1780	4	4	-1947	$(2,4,3)$	$(2,4)$
-1619	,	3	-1783	2	1	-1951	$(2,3,5)$	$(3,5)$
-1623	(2, 3)	1	-1784	2	2	-1955	$(2,2)$	$(2,2)$
-1624	2	2	-1787	1	1	-1956	$(4,3)$,
-1627	1	1	-1795	2	2	-1959	2	1
-1631	$(2,2)$	2	-1796	$(8,7)$	$(4,7)$	-1963	2	2
-1635	$(2,2)$	$(2,2)$	-1799	$(2,2)$	2	-1967	$(2,2,3)$	$(2,3)$
-1636	$(4,19)$	$(2,19)$	-1803	$(4,3,13)$	$(4,13)$	-1972	2	2
-1639	2	1	-1807	2	,	-1976	2	2
-1640	4	4	-1811	1	1	-1979	1	1
-1643	2	2	-1812	$(2,3)$	2	-1983	$(2,3)$	1
-1651	2	2	-1816	1	1	-1987	1	1
-1652	2	2	-1819	2	2	-1988	$(2,8)$	$(2,4)$
-1655	2	1	-1823	2	1	-1991	2	1
-1659	$(2,2,3)$	$(2,2)$	-1828	4	2	-1992	$(2,3)$	2
-1663	2	1	-1831	2	1	-1995	$(2,2,2)$	$(2,2,2)$
-1667	83	83	-1832	49	49	-1999	2	,
-1668	$(4,9)$	$(2,3)$	-1835	2	2	-2003	1	1

Table 1. (Continued)

d	tame	wild
-2004	2	2
-2008	1	1
-2011	1	1
-2015	$(2,2)$	2
-2019	$(16,3)$	16
-2020	4	2
-2024	$(2,7)$	$(2,7)$
-2027	1	1
-2031	2	1
-2035	$(2,4)$	$(2,4)$
-2036	3	3
-2039	2	1
-2040	$(2,2)$	$(2,2)$
-2047	$(2,2)$	2
-2051	$(2,3)$	$(2,3)$
-2055	$(2,2,3)$	2
-2056	4	4
-2059	2	2
-2063	2	1
-2067	$(2,2)$	$(2,2)$
-2068	2	2
-2071	2	1
-2072	2	2
-2083	1	1
-2084	4	2
-2087	2	1
-2091	$(2,2,3)$	$(2,2)$
-2095	2	1
-2099	1	1
-2103	$(2,5)$	5
-2104	2	2
-2111	2	1
-2119	2	1
-2120	2	2
-2123	2	2
-2127	$(2,3)$	1
-2131	1	1
-2132	$(2,3)$	$(2,3)$
-2135	$(2,2)$	2
-2136	$(2,3)$	2
-2139	$(2,2)$	$(2,2)$
-2143	2	1
-2147	2	2
-2148	4	2
-2152	1	1
-2155	2	2
-2159	$(2,2)$	2
-2163	$(2,2,3,5)$	$(2,2,5)$
-2164	1	1
-2167	2	1
-2168	2	2

d	tame	wild
-2171	2	2
-2179	25	25
-2180	4	2
-2183	$(2,3)$	3
-2184	$(2,2)$	$(2,2)$
-2191	$(2,2)$	2
-2195	$(2,5)$	$(2,5)$
-2199	$(2,3)$	1
-2203	1	1
-2207	2	1
-2211	$(2,8)$	$(2,8)$
-2212	$(2,4)$	$(2,2)$
-2215	$(2,5,23)$	$(5,23)$
-2216	1	1
-2219	2	2
-2227	$(2,3)$	$(2,3)$
-2228	1	1
-2231	$(2,2)$	2
-2235	$(2,2,27)$	$(2,2,9)$
-2239	2	1
-2243	1	1
-2244	$(2,8,3)$	$(2,4)$
-2247	$(2,2)$	2
-2248	2	2
-2251	1	1
-2255	$(2,2)$	2
-2260	2	2
-2263	$(2,2)$	2
-2264	1	1
-2267	1	1
-2271	$(2,3,5)$	5
-2276	4	2
-2279	2	1
-2280	$(2,2,3)$	$(2,2)$
-2283	$(2,3)$	$(2,3)$
-2287	2	1
-2291	2	2
-2292	2	2
-2296	$(2,2)$	$(2,2)$
-2307	$(4,3)$	4
-2308	16	8
-2311	2	1
-2315	2	2
-2319	2	1
-2323	2	2
-2324	2	2
-2327	2	1
-2328	4	4
-2335	2	1
-2339	1	1
-2343	$(2,2,3)$	2

d	tame	wild
-2344	3	3
-2347	1	1
-2351	$(2,3)$	3
-2355	$(2,2,9)$	$(2,2,9)$
-2356	2	2
-2359	$(2,2)$	2
-2360	2	2
-2363	2	2
-2371	1	1
-2372	16	8
-2379	$(2,4,3)$	$(2,4)$
-2383	2	1
-2387	$(2,2)$	$(2,2)$
-2388	$(2,3)$	2
-2391	2	1
-2392	$(2,7)$	$(2,7)$
-2395	$(2,25)$	$(2,25)$
-2399	2	1
-2404	4	2
-2407	2	1
-2408	$(2,3)$	$(2,3)$
-2411	1	1
-2415	$(2,2,2,3)$	$(2,2)$
-2419	4	4
-2423	2	1
-2424	$(2,3)$	2
-2427	2	2
-2431	$(2,2)$	2
-2435	2	2
-2436	$(2,4)$	$(2,2)$
-2440	2	2
-2443	2	2
-2447	$(2,7)$	7
-2451	$(2,4,3,7)$	$(2,4,7)$
-2452	1	1
-2455	2	1
-2456	1	1
-2459	1	1
-2463	2	1
-2467	1	1
-2468	$(4,3)$	$(2,3)$
-2471	$(2,2)$	2
-2472	2	2
-2479	2	1
-2483	2	2
-2487	$(2,3)$	1
-2488	$(2,3)$	$(2,3)$
-2491	$(2,3)$	$(2,3)$
-2495	2	1
-2503	2	1
-2504	2	2

Table 1. (Continued)

d	tame	wild	d	tame	wild	d	tame	wild
-2507	2	2	-2679	$(2,2)$	2	-2839	(2, 2)	2
-2515	2	2	-2680	2	2	-2840	2	2
-2516	2	2	-2683	1	1	-2843	1	1
-2519	2	1	-2687	2	1	-2847	$(2,2,3)$	2
-2531	1	1	-2692	8	4	-2851	,	1
-2532	$(4,3)$	2	-2696	8	8	-2852	$(2,4,3)$	$(2,2,3)$
-2536	,	1	-2699	1	1	-2855	2	1
-2539	1	1	-2703	$(2,2,3)$	2	-2856	$(2,2,9)$	$(2,2,3)$
-2543	2	1	-2707	1	1	-2859	$(2,5)$	$(2,5)$
-2551	2	1	-2708	1	1	-2863	$(2,2)$	2
-2552	2	2	-2711	2	1	-2867	$(2,5)$	$(2,5)$
-2555	$(2,2,3)$	$(2,2,3)$	-2712	$(2,3)$	2	-2868)	2
-2559	$(2,3)$	1	-2715	$(2,2)$	$(2,2)$	-2872	2	2
-2563	,	2	-2719	,	,	-2879	$(2,3)$	3
-2564	8	4	-2723	2	2	-2884	$(2,8)$	$(2,4)$
-2567	$(2,2)$	2	-2724	4	2	-2887	2	,
-2568	$(2,3)$	2	-2728	2	2	-2895	$(2,2)$	2
-2571	2	2	-2731	1	1	-2899	2	2
-2579	1	1	-2735	2	1	-2903	2	1
-2580	$(2,2)$	$(2,2)$	-2739	$(2,8,3)$	$(2,8)$	-2911	$(2,2)$	2
-2584	8	8	-2740	$(2,3)$	$(2,3)$	-2915	$(2,4,3)$	$(2,4,3)$
-2587	2	2	-2743	2	1	-2919	$(2,4,3)$	4
-2591	2	1	-2747	2	2	-2920	2	2
-2595	$(2,2,3)$	$(2,2)$	-2751	$(2,4)$	4	-2923	$(2,3,23)$	$(2,3,23)$
-2596	4	2	-2755	$(2,2)$	$(2,2)$	-2927	2	1
-2599	$(2,2)$	2	-2756		2	-2931	2	2
-2603		4	-2759	$(2,2,3)$	$(2,3)$	-2932	1	1
-2607	$(2,2)$	2	-2760	$(2,2)$	$(2,2)$	-2935	2	1
-2611	2	2	-2767	$(2,5)$	5	-2936	2	2
-2612	1	1	-2771	2	2	-2939	1	1
-2615	2	1	-2776	11	11	-2947	2	2
-2616	2	2	-2779	2	2	-2948	4	2
-2623	2	1	-6787	2	2	-2951	$(2,5)$	5
-2627	$(2,3)$	$(2,3)$	-2788	$(2,4)$	$(2,2)$	-2955	$(2,2,3)$	$(2,2)$
-2631	$(2,3)$	1	-2791	$(2,3)$,	-2959	2	1
-2632	$(2,2)$	$(2,2)$	-2792	5	5	-2963	1	1
-2635	$(2,2)$	$(2,2)$	-2795	$(2,2)$	$(2,2)$	-2964	$(2,2,3)$	$(2,2)$
-2639	$(2,2)$	2	-2803	1	1	-2967	$(2,2)$	2
-2643	2	2	-2804	1	1	-2968	2	2
-2644	1	1	-2807	$(2,4)$	4	-2971	5	5
-2647	2	1	-2811	$(32,3)$	32	-2980	4	2
-2648	1	1	-2815	2	1	-2983	2	1
-2651	2	2	-2819	1	1	-2984	1	1
-2659	1	1	-2820	$(2,4,3)$	$(2,2)$	-2987	2	2
-2660	(2, 4)	$(2,2)$	-2823	2	1	-2991	$(2,3)$	1
-2663	2	1	-2824	$(8,3)$	$(8,3)$	-2995	2	2
-2667	$(2,2,3)$	$(2,2)$	-2827	$(4,5)$	$(4,5)$	-2996	2	2
-2671	2	1	-2831	2	1	-2999	2	1
-2676	$(2,3)$	2	-2836	1	1	-3003	$(2,2,2)$	(2, 2, 2)

Table 1. (Continued)

d	tame	wild	d	tame	wild	d	tame	wild
-3007	(2, 4)	4	-3163	1	1	-3335	(2, 2)	2
-3011	7	7	-3167	2	1	-3336	2	2
-3012	4	2	-3171	(2, 2, 3)	$(2,2)$	-3343	2	1
-3016	2	2	-3172	4	2	-3347	1	1
-3019	7	7	-3176	17	17	-3351	$(2,3)$	1
-3023	2	1	-3183	2	1	-3352	1	1
-3027	$(4,3)$	4	-3187	1	1	-3355	$(2,2,13)$	$(2,2,13)$
-3028	1	1	-3188	1	1	-3359	$(2,3)$	3
-3031	$(2,2)$	2	-3191	2	1	-3363	$(2,4)$	(2, 4)
-3032	1	1	-3192	(2, 2)	$(2,2)$	-3367	$(2,2)$	2
-3035	2	2	-3199	$(2,2)$	2	-3368	1	1
-3039	2	1	-3203	1	1	-3371	1	1
-3043	4	4	-3207	$(2,3)$	1	-3379	$(2,37)$	$(2,37)$
-3044	4	2	-3208	4	4	-3383	$(2,2)$	2
-3047	$(2,5)$	5	-3215	$(2,23)$	23	-3387	$(4,3,3)$	$(4,3)$
-3048	$(2,5,9)$	$(2,5,9)$	-3219	$(2,2)$	$(2,2)$	-3391	2	1
-3055	$(2,2,5)$	$(2,5)$	-3220	(2, 2)	$(2,2)$	-3395	$(2,2)$	$(2,2)$
-3059	$(2,2)$	$(2,2)$	-3223	2	1	-3396	$(4,3)$	2
-3063	$(2,3)$	1	-3224	(2, 7)	$(2,7)$	-3399	$(2,4)$	4
-3064	$(2,3)$	$(2,3)$	-3227	2	2	-3403	8	8
-3067	1	1	-3235	2	2	-3407	2	1
-3071	2	1	-3236	4	2	-3412	1	1
-3076	8	4	-3239	$(2,2)$	2	-3415	2	1
-3079	2	1	-3243	$(2,4,3)$	$(2,4)$	-3416	$(2,11)$	$(2,11)$
-3080	$(2,2)$	$(2,2)$	-3247	$(2,16)$	16	-3419	2	2
-3083	1	1	-3251	1	1	-3423	$(2,2,3,11)$	$(2,11)$
-3091	2	2	-3252	(2, 3)	2	-3427	2	2
-3092	1	1	-3255	(2, 2, 2)	$(2,2)$	-3428	4	2
-3095	2	1	-3256	2	2	-3431	$(2,2)$	2
-3099	$(4,3)$	4	-3259	1	1	-3432	(2, 2, 3)	$(2,2)$
-3103	2	1	-3263	2	1	-3435	$(2,2)$	$(2,2)$
-3107	2	2	-3268	4	2	-3439	2	1
-3108	$(2,4,3,13)$	$(2,2,13)$	-3271	(2, 3)	3	-3443	4	4
-3111	$(2,2)$	2	-3272	2	2	-3444	$(2,2)$	$(2,2)$
-3112	1	1	-3279	(2, 3)	1	-3448	2	2
-3115	$(2,2)$	$(2,2)$	-3284	1	1	-3451	(2, 2, 3)	$(2,2,3)$
-3119	2	1	-3287	2	1	-3455	2	1
-3124	2	2	-3288	(2, 3)	2	-3459	$(4,9)$	$(4,3)$
-3127	2	1	-3291	2	2	-3460	4	2
-3128	$(2,2)$	$(2,2)$	-3295	2	1	-3463	2	1
-3131	2	2	-3299	$(3,5)$	$(3,5)$	-3464	4	4
-3135	$(2,2,2,3)$	$(2,2)$	-3304	2	2	-3467	1	1
-3139	2	2	-3307	1	1	-3471	(2, 2)	2
-3140	4	2	-3311	$(2,2)$	2	-3476	2	2
-3143	$(2,2)$	2	-3315	(2, 2, 2, 3)	$(2,2,2)$	-3480	(2, 4)	$(2,4)$
-3144	$(2,3)$	2	-3316	1	1	-3487	2	1
-3147	2	2	-3319	2	1	-3491	1	1
-3151	$(2,2)$	2	-3320	$(2,5)$	$(2,5)$	-3495	(2, 2, 3)	2
-3155	2	2	-3323	1	1	-3496	2	2
-3156	2	2	-3327	2	1	-3499	1	1
-3160	2	2	-3331	1	1	-3503	(2, 2)	2

Table 1. (Continued)

d	tame	wild	d	tame	wild	d	tame	wild
-3507	$(2,2)$	$(2,2)$	-3659	1	1	-3832	2	2
-3508	1	1	-3667	2	2	-3835	$(2,2,3,23)$	$(2,2,3,23)$
-3511	2	1	-3668	2	2	-3839	2	,
-3512	2	2	-3671	$(2,3)$	3	-3847	2	1
-3515	(2, 2)	$(2,2)$	-3679	2	1	-3848	2	2
-3523	2	2	-3683	2	2	-3851	1	1
-3524	16	8	-3684	$(4,3)$	2	-3855	$(2,2,3)$	2
-3527	2	1	-3687	$(2,3)$	3	-3859	2	2
-3531	$(2,4,3)$	$(2,4)$	-3688	1	1	-3860	2	2
-3535	$(2,2)$	2	-3691	1	1	-3863	2	1
-3539	1	1	-3695	$(2,3,5)$	$(3,5)$	-3864	$(2,2,3)$	$(2,2)$
-3540	$(2,2,27)$	$(2,2,9)$	-3704	2	2	-3867	2	2
-3543	2	1	-3707	2	2	-3876	$(2,4)$	$(2,2)$
-3544	1	1	-3711	$(2,3)$	1	-3880	2	2
-3547	3	3	-3715	2	2	-3883	8	8
-3551	2	1	-3716	8	4	-3891	$(4,3)$	4
-3556	$(2,4)$	$(2,2)$	-3719	2	1	-3892	2	2
-3559	2	1	-3720	(2, 2, 3)	$(2,2)$	-3895	$(2,2)$	2
-3560	4	4	-3723	$(2,2,5)$	$(2,2,5)$	-3896	$(2,3)$	$(2,3)$
-3563	2	2	-3727	2	1	-3899	$(2,3)$	$(2,3)$
-3567	$(2,2,3)$	2	-3731	$(2,2)$	$(2,2)$	-3903	2	1
-3571	1	1	-3732	2	2	-3907	1	1
-3572	2	2	-3736	1	1	-3908	8	4
-3576	(2, 3)	2	-3739	1	1	-3911	2	1
-3579	2	2	-3743	2	1	-3912	$(2,3)$	$(2,3)$
-3583	2	1	-3747	$(4,3)$	4	-3919	$(2,3)$	3
-3587	2	2	-7748	4	2	-3923	1	1
-3588	$(2,4)$	$(2,2)$	-3752	2	2	-3927	(2, 2, 2, 3)	$(2,2)$
-3592	4	4	-3755	2	2	-3928	1	1
-3595	2	2	-379	$(2,2)$	2	-3931	1	1
-3599	2	1	-3763	$(2,3)$	$(2,3)$	-3935	2	1
-3603	$(4,3)$	4	-3764	1	1	-3939	$(2,2)$	$(2,2)$
-3604	$(4,3)$	$(4,3)$	-3767	2	1	-3940	4	2
-3607	$(2,17)$	17	-3768	2	2	-3943	$(2,3)$	3
-3608	2	2	-3779	1	1	-3944	2	2
-3611	2	2	-3783	$(2,2,9)$	$(2,3)$	-3947	1	1
-3615	$(2,4)$	4	-3784	2	2	-3955	$(2,2)$	$(2,2)$
-3619	$(2,2)$	(2, 2)	-3787	2	2	-3956	$(2,5)$	$(2,5)$
-3620	4	2	-3791	$(2,4)$	4	-3959	$(2,23)$	23
-3623	2	1	-3795	$(2,2,2)$	$(2,2,2)$	-3963	$(8,3)$	8
-3624	$(2,125)$	$(2,125)$	-3796	2	2	-3967	2	1
-3631	2	1	-3799	2	1	-3972	$(4,3)$	2
-3635	2	2	-3803	1	1	-3976	$(2,4)$	$(2,4)$
-3639	$(2,3)$	1	-3811	2	2	-3979	2	2
-3640	$(2,4)$	$(2,4)$	-3812	4	2	-3983	$(2,2)$	2
-3643	3	3	-3815	$(2,2)$	2	-3988	1	1
-3647	$(2,2,3)$	$(2,3)$	-3819	$(2,4,3)$	$(2,4)$	-3991	2	1
-3651	2	2	-3823	2	1	-3992	1	1
-3652		2	-3827	2	2	-3995	$(2,2)$	$(2,2)$
-3655	(2, 2)	2	-3828	$(2,2,3)$	$(2,2)$	-3999	$(2,4,9)$	$(4,3)$
-3656	2	2	-3831	2	1	-4003	1	1

Table 1. (Continued)

d	tame	wild
-4004	$(2,4)$	$(2,2)$
-4007	2	1
-4008	$(2,3)$	2
-4011	$(2,2)$	$(2,2)$
-4015	$(2,2)$	2
-4019	5	5
-4020	$(2,2)$	$(2,2)$
-4024	2	2
-4027	3	3
-4031	2	1
-4035	$(2,2,3)$	$(2,2)$
-4036	8	4
-4039	$(2,2)$	2
-4040	2	2
-4043	2	2
-4047	$(2,2)$	2
-4051	1	1
-4052	1	1
-4055	2	1
-4063	$(2,4)$	4
-4071	$(2,2,3)$	2
-4072	3	3
-4079	2	1
-4083	2	2
-4084	1	1
-4087	2	1
-4088	$(2,2)$	$(2,2)$
-4091	1	1
-4099	1	1
-4103	$(2,3)$	3
-4111	$(2,3)$	3
-4115	2	2
-4119	$(2,3)$	3
-4120	2	2
-4123	$(2,2)$	$(2,2)$
-4127	2	1
-4132	4	2
-4135	2	1
-4136	2	2
-4139	7	7
-4143	$(2,3)$	1
-4147	$(2,2,3)$	$(2,2,3)$
-4148	$(2,29)$	$(2,29)$
-4151	$(2,2,5)$	$(2,5)$
-4152	$(2,3)$	2
-4155	$(2,2)$	$(2,2)$
-4159	$(2,5)$	5
-4163	2	2
-4164	4	2
-4168	2	2
-4171	4	4

d	tame	wild
-4179	$(2,2,3)$	$(2,2)$
-4180	$(2,4)$	$(2,4)$
-4183	$(2,4)$	4
-4184	3	3
-4187	2	2
-4191	$(2,2)$	2
-4195	2	2
-4196	4	2
-4199	$(2,4)$	4
-4207	$(2,2)$	2
-4211	1	1
-4215	$(2,2,3)$	2
-4216	$(2,2)$	$(2,2)$
-4219	3	3
-4223	$(2,4)$	4
-4227	2	2
-4228	$(2,8)$	$(2,4)$
-4231	2	1
-4243	5	5
-4244	5	5
-4247	$(2,2)$	2
-4251	$(2,4,3,7)$	$(2,4,7)$
-4255	$(2,2,3)$	$(2,3)$
-4259	1	1
-4260	$(2,4,3)$	$(2,2)$
-4264	2	2
-4267	4	4
-4271	2	1
-4276	1	1
-4279	2	1
-4280	2	2
-4283	3	3
-4287	$(2,3)$	1
-4291	2	2
-4292	4	2
-4295	2	1
-4296	$(2,3)$	2
-4299	2	2
-4303	2	1
-4307	$(2,5)$	$(2,5)$
-4308	$(2,3)$	$(2,3)$
-4315	2	2
-4319	$(2,4,5)$	$(4,5)$
-4323	$(2,4,3)$	$(2,4)$
-4324	$(2,4)$	$(2,2)$
-4327	2	1
-4328	1	1
-4331	$(2,7)$	$(2,7)$
-4339	1	1
-4340	$(2,2)$	$(2,2)$
-4343	2	1

d	tame	wild
-4344	2	2
-4351	2	1
-4355	$(2,2)$	$(2,2)$
-4359	$(2,3)$	1
-4360	2	2
-4363	3	3
-4367	2	1
-4371	$(2,2,49)$	$(2,2,49)$
-4372	1	1
-4376	1	1
-4379	2	2
-4387	8	8
-4388	4	2
-4391	2	1
-4395	$(2,2,3)$	$(2,2)$
-4399	2	1
-4403	$(2,2)$	$(2,2)$
-4404	$(2,3)$	2
-4407	$(2,2)$	2
-4408	2	2
-4411	4	4
-4415	$(2,3,7)$	$(3,7)$
-4420	$(2,4)$	$(2,2)$
-4423	$(2,3)$	3
-4424	$(2,2,5)$	$(2,2,5)$
-4427	4	4
-4431	$(2,2,3)$	2
-4435	2	2
-4436	1	1
-4439	$(2,2)$	2
-4440	$(2,2,3)$	$(2,2)$
-4443	2	2
-4447	2	1
-4451	1	1
-4452	$(2,4)$	$(2,2)$
-4456	1	1
-4463	2	1
-4467	$(4,3)$	4
-4468	1	1
-4471	$(2,2)$	2
-4472	2	2
-4479	2	1
-4483	1	1
-4484	4	2
-4487	$(2,4)$	4
-4488	$(2,4)$	$(2,4)$
-4495	$(2,2)$	2
-4499	2	2
-4503	$(2,2,3)$	2
-4504	1	1
-4507	1	1

Table 1. (Continued)

d	tame	wild
-4511	2	1
-4515	$(2,2,2)$	$(2,2,2)$
-4516	4	2
-4519	2	1
-4520	2	2
-4523	1	1
-4531	2	2
-4532	2	2
-4535	2	1
-4539	$(2,2,3)$	$(2,2)$
-4543	$(2,2)$	2
-4547	233	233
-4548	$(4,3)$	2
-4551	$(2,2)$	2
-4552	2	2
-4555	2	2
-4559	$(2,2)$	2
-4564	2	2
-4567	2	1
-4568	1	1
-4571	2	2
-4579	$(2,5)$	$(2,5)$
-4580	4	2
-4583	$(2,5)$	5
-4584	$(2,3)$	2
-4587	$(2,2)$	$(2,2)$
-4591	2	1
-4595	$(2,3)$	$(2,3)$
-4596	2	2
-4603	1	1
-4607	$(2,4)$	4
-4611	$(2,2,3)$	$(2,2)$
-4612	8	4
-4615	$(2,2)$	2
-4616	8	8
-4619	2	2
-4623	$(2,2)$	2
-4627	2	2
-4628	2	2
-4631	2	1
-4632	$(4,7)$	$(4,7)$
-4639	2	1
-4643	1	1
-4647	$(2,3)$	1
-4648	2	2
-4651	1	1
-4659	2	2
-4660	2	2
-4663	2	1
-4664	2	2
-4667	2	2

d	tame	wild
-4676	$(2,8)$	$(2,4)$
-4679	2	1
-4683	$(2,2,3,37)$	$(2,2,37)$
-4687	2	1
-4691	1	1
-4692	$(2,2,3)$	$(2,2)$
-4695	$(2,2)$	2
-4696	1	1
-4699	2	2
-4703	2	1
-4708	4	2
-4711	$(2,2)$	2
-4712	2	2
-4715	$(2,4)$	$(2,4)$
-4723	1	1
-4724	1	1
-4727	2	1
-4728	$(2,3)$	2
-4731	$(2,2)$	$(2,2)$
-4735	2	1
-4739	2	2
-4740	$(2,4)$	$(2,2)$
-4744	8	8
-4747	2	2
-4751	2	1
-4755	$(2,2,3)$	$(2,2)$
-4756	2	2
-4759	2	1
-4760	$(2,2)$	$(2,2)$
-4763	4	4
-4767	$(2,4)$	4
-4771	$(2,7)$	$(2,7)$
-4772	$(4,3,5)$	$(2,3,5)$
-4776	2	2
-4783	$(2,5)$	5
-4787	1	1
-4791	$(2,3)$	1
-4792	$(2,9)$	$(2,9)$
-4795	$(2,2,3,7)$	$(2,2,3,7)$
-4799	$(2,3)$	3
-4803	2	2
-4804	8	4
-4807	$(2,4)$	4
-4808	$(2,3)$	$(2,3)$
-4811	2	2
-4819	$(2,3)$	$(2,3)$
-4820	4	4
-4823	$(2,2)$	2
-4827	$(4,9)$	$(4,3)$
-4831	2	1
-4835	$(2,3)$	$(2,3)$

d	tame	wild
-4836	$(2,4,3)$	$(2,2)$
-4839	2	1
-4843	2	2
-4847	2	1
-4852	1	1
-4855	2	1
-4856	2	2
-4859	2	2
-4863	$(2,3)$	1
-4867	2	2
-4868	64	32
-4871	2	1
-4872	$(2,2,3)$	$(2,2)$
-4879	$(2,2,2)$	$(2,2)$
-4883	2	2
-4884	$(2,16)$	$(2,16)$
-4888	$(2,5,7)$	$(2,5,7)$
-4891	4	4
-4895	$(2,4)$	4
-4899	$(2,8,3)$	$(2,8)$
-4903	$(2,5)$	5
-4904	1	1
-4907	2	2
-4911	2	1
-4915	2	2
-4916	1	1
-4919	2	1
-4920	$(2,2)$	$(2,2)$
-4927	2	1
-4931	1	1
-4935	$(2,2,3)$	$(2,2)$
-4936	$(2,5)$	$(2,5)$
-4939	4	4
-4943	2	1
-4947	$(2,2)$	$(2,2)$
-4948	17	17
-4951	2	1
-4952	1	1
-4955	2	2
-4963	2	2
-4964	$(2,4)$	$(2,2)$
-4967	2	1
-4971	$(16,3)$	16
-4979	2	2
-4980	$(2,2,3)$	$(2,2)$
-4983	$(2,2)$	2
-4984	$(2,2)$	$(2,2)$
-4987	1	1
-4991	$(2,2,2)$	$(2,2)$
-4996	32	16
-4999	2	1

References

[BBCO] C. Bernardi. D. Batut, H. Cohen and M. Olivier, GP-PARI, a computer package.
[Bl] S. Bloch, Applications of the dilogarithm function in algebraic K-theory and algebraic geometry, Proc. Int. Symp. Alg. Geom., Kyoto, Kinokuniya, 1977, pp. 103-114. MR 82f:14009
[Bo1] A. Borel, Cohomologie de $S L_{n}$ et valeurs de fonctions zêta aux points entiers, Ann. Sc. Norm. Sup. Pisa (4) 4, no. 4 (1977), 613-636; errata 7, no. 2 (1980), 373. MR 58:22016; MR 81k:12012
[Bo2] A. Borel, Values of zeta-functions at integers, cohomology and polylogarithms, Current Trends in Mathematics and Physics, 1-44, Narosa, New Delhi, 1995. MR 97a:19005
[B-82] J. Browkin, The functor K_{2} for the ring of integers of a number field, Universal Algebra and Applications, (Warsaw, 1978), Banach Center Publications, vol. 9, PWN, Warsaw, 1982, pp. 187-195. MR 85f:11084
[B-92] J. Browkin, On the p-rank of the tame kernel of algebraic number fields, Journ. Reine Angew. Math., 432 (1992), 135-149. MR 93j:11077
[B-S] J. Browkin and A. Schinzel, On Sylow 2-subgroups of $K_{2} O_{F}$ for quadratic number fields F, Journ. Reine Angew. Math., 331 (1982), 104-113. MR 83g: 12011
[C-H] P. E. Conner and J. Hurrelbrink, Class number parity, Series in Pure Math. 8, World Scientific Publ, Singapore, 1988. MR 90f:11092
[Ga] H. Gangl, Werte von Dedekindschen Zetafunktionen, Dilogarithmuswerte und Pflasterungen des hyperbolischen Raumes, Diplomarbeit Bonn, 1989.
[Gr] D. Grayson, Dilogarithm computations for K_{3} in: Algebraic K-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980), Lecture Notes in Math. 854 (1981), 168-178. MR 82i:12012
[KNF] M. Kolster, T. Nguyen Quang Do, V. Fleckinger, Twisted S-units, p-adic class number formulas, and the Lichtenbaum conjectures, Duke Math. J., 84 (1996), 679-717; errata 90 (1997), 641-643. MR 97g:11136; CMP 98:04
[Li] S. Lichtenbaum, Values of zeta-functions, étale cohomology, and algebraic K-theory, Lecture Notes in Math. 342 (1973), 489-501 Springer, Berlin. MR 53:10765
[M-W] B. Mazur, A. Wiles, Class fields of abelian extensions of \mathbb{Q}, Invent. Math. 76, no. 2 (1984), 179-330. MR 85m:11069
[Q1] Qin Hourong, The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields, Acta Arith., 69 (1995), 153-169. MR 96a:11132
[Q2] Qin Hourong, Computation of $K_{2} Z[\sqrt{-6}]$, Journ. Pure Appl. Algebra 96 (1994), 133-146. MR 95i:11135
[Q3] Qin Hourong, Computation of $K_{2} Z\left[\frac{1+\sqrt{-35}}{2}\right]$, Chin. Ann. of Math., 17B, 1 (1996), 63-72. MR 97a:19004
[Sk] M. Skałba, Generalization of Thue's theorem and computation of the group $K_{2} O_{F}$, J. Number Theory 46 (1994), 303-322. MR 95d:19001
[Su] A.A. Suslin, Algebraic K-theory of fields, in: Proceedings of the International Congress of Mathematicians, Berkeley, CA, 1986, Vol.I, AMS, Providence, RI, 1987, pp. 222-244. MR 89k:12010
[Ta] J. Tate, Appendix to "The Milnor ring of a global field" by H. Bass and J. Tate in: Algebraic K-theory, II: "Classical" algebraic K-theory and connections with arithmetic (Proc. Conf., Seattle Res. Center, Battelle Memorial Inst., 1971), Lecture Notes in Math. 342 (1973), 429-446. MR 56:449

Jerzy Browkin, Institute of Mathematics, University of Warsaw, ul. Banacha 2, PL-02-097 Warszawa, Poland

E-mail address: bro@mimuw.edu.pl
Herbert Gangl, Institute for Experimental Mathematics, Ellernstr. 29, D-45326 Essen, Germany

E-mail address: herbert@mpim-bonn.mpg.de

[^0]: Received by the editor January 3, 1997.
 1991 Mathematics Subject Classification. Primary 11R11; Secondary 11R70, 11Y40, 19C99, 19F27.

 Key words and phrases. Tame kernel, wild kernel, quadratic imaginary fields, Lichtenbaum's conjecture.

 The second author was supported by the Deutsche Forschungsgemeinschaft.

