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STABILITY OF RUNGE–KUTTA METHODS
FOR ABSTRACT TIME-DEPENDENT PARABOLIC PROBLEMS:

THE HÖLDER CASE

C. GONZÁLEZ AND C. PALENCIA

Abstract. We consider an abstract time-dependent, linear parabolic problem

u′(t) = A(t)u(t), u(t0) = u0,

where A(t) : D ⊂ X → X, t ∈ J , is a family of sectorial operators in a Banach
space X with time-independent domain D. This problem is discretized in time
by means of an A(θ) strongly stable Runge-Kutta method, 0 < θ < π/2. We
prove that the resulting discretization is stable, under the assumption

‖(A(t) − A(s))x‖ ≤ L|t− s|α(‖x‖+ ‖A(s)x‖), x ∈ D, t, s ∈ J,

where L > 0 and α ∈ (0, 1). Our results are applicable to the analysis of
parabolic problems in the Lp, p 6= 2, norms.

1. Introduction

Let X be a complex Banach space and let J ⊂ R be an interval. We consider
a family of linear, densely defined operators A(t) : D ⊂ X → X , with domain
D(A(t)) = D independent of t ∈ J . We are concerned with the the stability of
discretizations in time, based on Runge–Kutta methods, of the initial value problem{

u′(t) = A(t)u(t), t ∈ J,
u(t0) = u0 ∈ D, t0 ∈ J.

(1)

For each angle θ ∈ (0, π/2), we set

Sθ := {0}
⋃
{ z ∈ C : z 6= 0, | arg(−z)| ≤ θ }.

Problem (1) is assumed to be parabolic in the sense that the operators are sectorial
with constants independent of t ∈ J , i.e., we assume that the following condition
holds.

H1. There exist M ≥ 1, ω0 ∈ R and θ ∈ (0, π/2) such that, for a complex z /∈
ω0 +Sθ and for t ∈ J , the resolvent (zI −A(t))−1 : X → X exists and the estimate

‖(zI −A(t))−1‖ ≤ M

|z − ω0|
is satisfied.
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The meaning of H1 is that the “frozen operator” problems{
u′(t) = A(t∗)u(t), t ∈ R,
u(t0) = u0 ∈ D,

where t∗ ranges over J , are uniformly holomorphic. In fact, under H1 it is well
known that for each angle ϕ ∈ (0, π/2− θ) there exists C = C(ϕ) > 0, independent
of t∗ ∈ J , such that ‖eσA(t∗)‖ ≤ Ceω0|σ|, for −σ ∈ Sϕ.

For the applications we have in mind, including the future study of the stability
of abstract quasilinear parabolic problems (see [11]), it is suitable to impose the
relative Hölder variation of the coefficients A(t), t ∈ J . To be precise, we assume
the following:

H2. There exist L > 0 and α ∈ (0, 1) such that

‖(A(t)−A(s))x‖ ≤ L|t− s|α(‖x‖+ ‖A(s)x‖), x ∈ D, t, s ∈ J.

It is well known that H1 and H2 guarantee the existence and uniqueness of the
solution of (1) (see e.g., [1, 2, 3, 13, 18, 19, 21]).

Problem (1) is discretized in time by means of a Runge–Kutta method defined
by its Butcher array (

c A
bT

)
,(2)

where b = [b1, . . . , bs]T ∈ Rs, c = [c1, . . . , cs]T ∈ Rs and A = (aij)s
i,j=1 ∈ Rs×s.

We suppose that 0 ≤ ci ≤ 1, for 1 ≤ i ≤ s. Let us recall that the stability function
of the method is the rational function r(z) = 1 + bT (I − zA)−1e, where I ∈ Rs×s

stands for the identity matrix and e = [1, . . . , 1]T ∈ Rs. The method is A(θ)-stable,
0 < θ < π/2, when (i) the spectrum of the matrix A is contained in the complement
of the sector Sθ and (ii) |r(z)| ≤ 1, for z ∈ Sθ. Notice that for A(θ)-stable methods,
the matrix A is regular. Moreover, if the method also satisfies (iii) γ := |r(∞)| < 1,
then we say that the method is strongly A(θ)-stable. Hereafter, we only consider
strongly A(θ)-stable methods. This excludes the Gaussian methods, among others.
On the other hand, there is a wide range of methods lying within this class of
strongly A(θ)-stable methods (see e.g., [12]).

Let u : J → X be the solution of problem (1). Let t0 < t1 < · · · < tN be a finite
sequence of time levels in J , with uniform spacing h = tn+1 − tn, 0 ≤ n ≤ N − 1.
The application of the Runge–Kutta method given by (2) to problem (1) leads to
the recurrence

un+1 = un + h
s∑

i=1

biA(tn + cih)U i
n, 0 ≤ n ≤ N − 1.(3)

Here un is the approximation to u(tn), 0 ≤ n ≤ N , and the internal stages U i
n ∈ D,

0 ≤ n ≤ N − 1, 1 ≤ i ≤ s, are defined by the system of equations

U i
n = un + h

s∑
j=1

aijA(tn + cjh)U j
n, 1 ≤ i ≤ s.(4)

In Lemma 2.3 we prove that, assuming that the method is strongly A(θ)-stable,
system (4) is uniquely solvable, for h > 0 small enough, even for data un ∈ X not
lying in the domain D. In fact we show that, for 0 ≤ n ≤ N − 1, there exists a
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continuous, linear mapping r(tn+1, tn) : X → X such that the recurrence (3) can
be written in compact form as

un+1 = r(tn+1, tn)un, 0 ≤ n ≤ N − 1.(5)

We also show that r(tn+1, tn) maps D onto D. Thus, the method makes sense for
generalized as well as for genuine solutions. The main problem we address in the
present paper is the stability of the procedure (5). Given a family {Fj}m

j=n of linear
operators defined in a common space, we set

m∏
j=n

Fj = Fm · Fm−1 · · ·Fn.

The stability of the method demands the boundedness, in independence of h > 0
small enough, of the compositions

∏m
j=n r(tj+1, tj) as bounded operators in X . Let

us point out that in the present paper we address not only the question of the
stability, but also the question of the so-called strong stability (see below) of the
method. The strong stability result turns out to be basic for the study of the
stability of the discretizations of quasilinear problems in [11]. We pay attention
to the size of the stability constants. This point is very important for the study
of quasilinear problems, as well as for the study of the asymptotic behavior of the
numerical solution.

For the proof of our results we require intermediate spaces between D and X .
The domain D is assumed to be endowed with the graph norm ‖ · ‖1 corresponding
to any A(t∗), t∗ ∈ J , i.e.,

‖x‖1 := ‖x‖+ ‖A(t∗)x‖, x ∈ D,(6)

where t∗ ∈ J has been fixed. After H2, any pair of such norms, corresponding to
different choices of t∗ ∈ J , are mutually equivalent (see below). The space D is
Banach, since the operators A(t∗), t∗ ∈ J , are closed. We set X0 = X , X1 = D and,
for 0 ≤ η ≤ 1, we denote by Xη = [X0, X1]η the Calderón interpolation space of
order η between X0 and X1 (see e.g., [5, 22]). Only the basic interpolation properties
are used in our analysis, so that the reader does not need a deep knowledge of
interpolation theory. Let us point out that the interpolation spaces obtained by
the real method could be used instead (see e.g., [5, 22]). However, the apparently
simpler choice Xη = D((ω0I − A(t))η), the domain of the fractional power, is
troublesome since, due to the lack of validity of Heinz’s theorem, such a domain may
depend on t ∈ J . The operator norm of a bounded linear operator F : Xµ → Xν ,
where µ, ν ∈ [0, 1], is denoted by ‖F‖µ→ν . We set ω̃0 = ω0/2, for ω0 ≤ 0, and
ω̃0 = 3ω0/2, for ω0 > 0. With this notation we can state the following theorem,
which provides the main contribution of the present paper.

Theorem 1.1. Assume that the parabolic problem (1) fulfills hypotheses H1 and
H2, for some M ≥ 1, ω0 ∈ R, θ ∈ (0, π/2), L ≥ 0 and α ∈ (0, 1), and assume
that the Runge–Kutta method given by (2) is strongly A(θ)-stable. Then there exist
constants K > 0 and Ω > 0, that are independent of L, and there exists h̄ > 0
such that for any arbitrary finite sequence of time levels tj, 0 ≤ j ≤ N , in J with
constant step-size 0 < h ≤ h̄ the stage equations (4) are uniquely solvable in X and
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the following stability estimates hold:∥∥∥ N−1∏
j=0

r(tj+1, tj)− γNI
∥∥∥

0→µ
≤ KT−µe(ω̃0+ΩL1/α)T (1 + BLT α)5,(7)

0 ≤ µ < 1,∥∥∥ N−1∏
j=0

r(tj+1, tj)− γNI
∥∥∥

ν→1
≤ KT ν−1e(ω̃0+ΩL1/α)T (1 + BLT α)5,(8)

0 < ν ≤ 1,∥∥∥ N−1∏
j=0

r(tj+1, tj)− γNI
∥∥∥

0→1
≤ KT−1e2(ω̃0+ΩL1/α)T (1 + BLT α)10,(9)

where r(tj+1, tj), 0 ≤ j ≤ N − 1, are the operators defined in (5) and T = tN − t0.
In (7), respectively in (8), B > 0 depends on γ and µ, respectively on γ and ν.

Notice that for either µ = 0 in (7) or ν = 1 in (8) we can dispense with the term
γN . Therefore, Theorem 1.1 yields the stability of the Runge–Kutta method in
either X0 or X1. Furthermore, by interpolation, we deduce that the Runge–Kutta
method is stable in Xµ, for 0 ≤ µ ≤ 1, and that we have the bound∥∥∥ N−1∏

j=0

r(tj+1, tj)
∥∥∥

µ→µ
≤ Ke(ω̃0+ΩL1/α)T (1 + BLT α)5.(10)

The way L enters in the estimates in Theorem 1.1 is crucial for the applications in
[11]. Moreover, we see that in case of asymptotic stability, i.e., when ω0 < 0, and
for small enough L, Theorem 1.1 yields estimates that are uniform, even with an
exponential damping, in t ∈ J . This is an important remark from the qualitative
point of view.

The estimate (9) can be viewed as the discrete counterpart of the analyticity of
the continuous problem. It shows that, except for the term γnu0, the numerical
approximations un, 1 ≤ n ≤ N , in (5) are smooth (in the sense that they belong to
X1) even for non-smooth initial data u0 ∈ X . When γ = 0, (9) yields the so-called
strong stability of the method. At first glance, it may seem natural to first prove
(9) and then obtain (7) and (8) by interpolation. However, for the proof of the
previous estimates we need some sort of Gronwall’s lemma (see Lemma 2.1) for
weakly singular convolution kernels. This lemma cannot be applied directly to the
proof of (9) because a non-integrable singularity appears. Therefore, in the proof
of Theorem 1.1, (9) is obtained as a consequence of (7) and (8).

For the backward Euler method, stability was studied in [9, 20]. In [4] similar
stability results for higher order methods are stated. However, the strong stability
concept considered in [4] differs from ours, because in [4], in the definition of the
intermediate spaces Xη, 0 ≤ η ≤ 1, the graph norm Â(t)η of the discrete generator
Â(t) := (I − r(hA(t)))/h, t ∈ J , is used instead of our choice. On the other hand,
conclusions related to ours, but in the context of Hilbert spaces and Gelfand–
Lions triplets, were obtained in [15]. Our general Banach spaces set-up cannot take
advantage on the main ideas used in [15]. Finally, in [10] we studied the stability for
time dependent problems (1), but there we assumed that the relative total variaton
of the operators A(t), t ∈ J , was bounded. In [10] methods with |r(∞)| = 1 can be
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considered. Moreover, in [10] we were able to give a precise account of the size of the
stability constants obtained. Under the hypothesis H2, the perturbative argument
of [10] cannot be used any longer.

The applications of Theorem 1.1 include the semidiscretizations in time of clas-
sical parabolic problems in the Lp, 1 ≤ p ≤ +∞, spaces. The reader is referred to
[10, Section 5], but taking into account that now, after Theorem 1.1, the coefficients
are allowed to be Hölder continuous in time. The main limitation, as in [10], is that
the domain of the operators must be independent of t ∈ J . This may exclude Neu-
mann boundary conditions. Finally, as we have already mentioned, Theorem 1.1
is also basic for the study of the semidiscretizaton in time of abstract quasilinear
parabolic problems (see [11]). Let us point out that for this study it is important
to reflect the dependence of the bounds on L and α, as in Theorem 1.1.

In Section 2 we present some auxiliary lemmas needed for the proof of Theo-
rem 1.1, including the Gronwall-type lemma. Section 3 is devoted to the proof of
Theorem 1.1.

2. Some auxiliary lemmas

In this section we present some lemmas that are necessary for the proof of The-
orem 1.1, we maintain the notation and hypotheses of this theorem. We assume
that we have fixed a uniformily spaced sequence tj , 0 ≤ j ≤ N , in J , with step
h > 0.

The first lemma provides a version of Gronwall’s lemma with a weakly singular
kernel. It is noteworthy that this lemma, in spite of its simple appearence, cannot be
obtained directly by comparison with its continuous counterpart. Another version
of a similar lemma can be found in [14]. We prefer our statement to that in [14]
since it accounts for the dependence with respect to the parameters involved. A
non-standard term is also included. This term will allow us to consider methods
with r(∞) 6= 0.

Lemma 2.1. Let h > 0, N ≥ 1 integer and set tj = jh, 0 ≤ j ≤ N . Let ξj ≥ 0,
0 ≤ j ≤ N , be a finite sequence of real numbers with ξ0 = 0. Assume that there exist
α ∈ (0, 1), η, γ ∈ [0, 1) and C1, C2, C3 ≥ 0 such that h ≤ h̄ := ((1 − γ)2/(4C2))1/α

and that, for 1 ≤ m ≤ N , we have

ξm ≤ C1t
−η
m + C2

m−1∑
j=1

(
htα−1

m−j + tαm−jγ
m−j−1

)
ξj

+ C3

m−1∑
j=1

(
h1−ηtα−1

m−jγ
j + h−ηγm−1tαm−j

)
.

Then there exists a constant B ≥ 0, depending only on η and γ, such that the
estimate

ξm ≤ 2eωtm(C1 + BC3t
α
m)(1 + BC2t

α
m)t−η

m , 1 ≤ m ≤ N,(11)

holds with

ω =
(
4C2Γ(α)

)1/α
.
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Proof. We begin by proving that there exists B1 > 0, depending only on η and γ,
such that

m−1∑
j=1

(
h1−ηtα−1

m−jγ
j + h−ηγm−1tαm−j

) ≤ B1t
α−η
m , 1 ≤ m ≤ N.(12)

We can assume that γ > 0. Fix 1 ≤ m ≤ N and let M be the integer part of
(m1−η)/2. We have that

h1−η
m−1∑
j=1

tα−1
m−jγ

j ≤ h1−η
M∑

j=1

tα−1
m−j + h1−η

m−1∑
j=M+1

tα−1
m−jγ

j

≤ h1−ηMtα−1
m−M + hα−ηmγM+1

≤ Mmη

m−M
tα−η
m + m2γM+1tα−η

m

≤ B′tα−η
m ,

where B′ := 1 + supx≥0 x2γ(1/2)x1−η

. Moreover, we have

h−η
m−1∑
j=1

γm−1tαm−j ≤ tα−η
m m1+ηγm−1 ≤ B′′tα−η

m ,

where B′′ := supx≥1 x1+ηγx−1. Therefore, (12) holds with B1 = B′ + B′′.

Now, after (12), the proof of the lemma can be restricted to the case C3 = 0.
Furthermore, with no loss of generality, we can assume that C1 = 1. It is also clear
that it is sufficient to prove (11) for m = N , because then the same result could be
applied to a smaller value of 1 ≤ m ≤ N .

Let g and tσ, σ > 0, be the sequences defined by g(j) = tαj γj−1 and tσ(j) = t−σ
j ,

for 1 ≤ j ≤ N , and by g(j) = tσ(j) = 0, for the remaining values of j ≥ 0 integer.
Furthermore, let x = {xj}+∞j=0 be the sequence defined by the convolution equation

x = tη + C2

(
ht1−α + g

) ∗ x,(13)

where ∗ stands for the discrete convolution of sequences. It is obvious that we have
ξj ≤ xj , for 1 ≤ j ≤ N . Therefore the lemma is reduced to prove that, for j = N ,
inequality (11) holds with xN instead of ξN .

For each given sequence u = {uj}+∞j=0 of complex numbers, we set ũ(z) =∑+∞
j=0 ujz

j, i.e., ũ stands for the generating function of u. As is well known, in
terms of the generating functions, equation (13) becomes

x̃(z) =
t̃η(z)

1− C2

(
ht̃1−α(z) + g̃(z)

) .(14)

Let r = {rj}+∞j=0 and s = {sj}+∞j=0 be the sequences whose generating functions are

r̃(z) =
(
1− C2(ht̃1−α(z) + g̃(z))

)−1 and s̃(z) = r̃(z)2, respectively. Now we trans-
form (14) by taking the derivatives and multiplying by z (recall that this process
corresponds to taking the generating function of the original sequence multiplied
componentwise by the sequence {j}+∞j=0). This leads to

zx̃′(z) = zt̃′η(z)r̃(z) + C2zt̃η(z)(ht̃′1−α(z) + g̃′(z))s̃(z),
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that after inverting leads to

NxN =
N∑

j=1

rN−jjt
−η
j + C2

N∑
j=1

sN−j

j−1∑
l=1

t−η
j−l(htα−1

l + tαl γl−1).(15)

Let us assume for the moment the validity of the estimates

N∑
j=0

|rj | ≤ 2eωtN ,

N∑
j=0

|sj | ≤ 4eωtN ,(16)

which we prove later. For 1 ≤ j ≤ N , we have that

jt−η
j ≤ Nt−η

N ,

and also, since B(1 + α, 1 − η) ≤ 2/Γ(1− η), that

j−1∑
l=1

t−η
j−ll(htα−1

l + tαl γl−1) ≤ (1 + γ∗)
j−1∑
l=1

t−η
j−lt

α
l

≤ (1 + γ∗)h−1

∫ tj

0

(tj − τ)−ητα dτ

= (1 + γ∗)jB(1 + α, 1− η)tα−η
j

≤ 2(1 + γ∗)Γ(1− η)−1Ntα−η
N ,

where γ∗ = supx≥1 xγx−1. By using the previous estimates in (15), it is straight-
forward to conclude that

NxN ≤
( N∑

j=0

|rj |
)
Nt−η

N + 2C2

( N∑
j=0

|sj |
)
Ntα−η

N (1 + γ∗)Γ(1− η)−1

≤ 2Nt−η
N eωtN

(
1 + 4C2Γ(1− η)−1(1 + γ∗)tαN

)
,

and, dividing by N , we get the desired bound for xN with

B = max{B1, 4Γ(1− η)−1(1 + γ∗)}.

It remains to prove (16). Notice that t̃1−α(0) = g̃(0) = 0. Thus, for z ∈ C with
small enough |z|, we have that

r̃(z) =
+∞∑
k=0

(
C2(ht̃1−α(z) + g̃(z))

)k;
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hence rj ≥ 0, for all j ≥ 0, since all the coefficients of ht̃1−α(z) + g̃(z) are non-
negative. Moreover, recalling the definition of ω and h̄, it is clear that

C2

(
ht̃1−α(e−hω) + g̃(e−hω)

)
= C2h

N∑
j=1

(tα−1
j + h−1tαj γj−1)e−ωtj

≤ C2

∫ tN

0

e−ωu

u1−α
du + C2

N∑
j=1

tαj γj−1

≤ C2ω
−α

∫ ωtN

0

e−vvα−1 dv + C2h
α

N∑
j=1

jγj−1

≤ C2Γ(α)ω−α + C2h
α(1− γ)−2

≤ 1/4 + 1/4 = 1/2.

Therefore, we have
N∑

j=0

|rj | =
N∑

j=1

rj ≤ eωtN

N∑
j=1

e−ωtjrj

= eωtN r̃(e−ωh)

= eωtN

(
1− C2

(
ht̃1−α(e−hω) + g̃(e−hω)

))−1

≤ 2eωtN .

In the same way we see that
N∑

n=0

|sj | ≤ eωtN

(
1− C2

(
ht̃1−α(e−hω) + g̃(e−hω)

))−2

≤ 4eωtN . 2

Hereafter, the letter K possibly with a subindex denotes positive constants that
depend only on M , θ, ω0 and the Runge–Kutta method. Of course, the K’s may
take different values at different places.

Lemma 2.2. There exist K > 0 and h̄ > 0, depending on M , θ, ω0 and the Runge–
Kutta method such that for all t ∈ J , n ≥ 1 integer and 0 < h < h̄, the following
estimate holds:

‖A(t)(rn(hA(t)) − γnI)‖0→0 ≤ Keω̃0nh

nh
.

Proof. The proof of this lemma is based on the Cauchy formula and it follows
closely the proof of the main theorem in [17].

Assume first that ω0 = 0. Select h > 0, t ∈ J and set A = hA(t). By using the
Neumann series (see, e.g., in [8, Lemma 4.2.1]), it is easy to see that there exist
M∗ ≥ M and 0 < θ∗ < θ, depending only on M and θ, such that A satisfies H1
with respect M∗, θ∗ and ω0 = 0. Then, because of the maximum principle, we have
|r(z)| < 1, for z 6= 0, z ∈ Sθ∗ . Since γ = |r(∞)| < 1, it is not hard to conclude that
there exist c > 0, 0 < γ̄ < 1 and R > 0, depending only on M , θ and r(z), such
that

|r(z)| ≤
 ec|z|, if |z| ≤ R, z /∈ Sθ∗ ,

e−c|z|, if |z| ≤ R, z ∈ Sθ∗ ,
γ̄, if |z| ≥ R, z ∈ Sθ∗ .

(17)
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Select two radii 0 < R0 < R < R∞ in such a way that all the poles of r(z) lay
in the annulus R0 < |z| < R∞. For n ≥ 1 integer, let Γn be the negative boundary
of the intersection of the annulus R0/n ≤ |z| ≤ R∞ with the complement of the
sector Sθ∗ . Following [17], we write

A(rn(A)− γnI) =
1

2πi

∫
Γn

z(r(z)n − γn)(zI −A)−1 dz.(18)

In order to estimate this integral, we first partition Γn as

Γn = Γn,0

⋃
Γ∞

⋃
Ln

⋃
L∞,

where Γn,0 (respectively Γ∞) is the part of Γn on the circle |z| = R0/n (respectively
|z| = R∞) and Ln (respectively L∞) is the part of Γn on the boundary of the
sector Sθ∗ lying in the disk |z| ≤ R (respectively in the region |z| ≥ R). After the
representation (18), we have

A(rn(A) − γnI) = I1,n + I2,n + I3,n + I4,n,

where I1,n, I2,n, I3,n and I4,n stand for the contributions to the integral due to
Γn,0, Γ∞, Ln, and L∞, respectively. By taking into account that H1 holds for A,
with M∗, θ∗ and ω0 = 0, and by (17), it is straightforward to see that there exists
K0 > 0 such that

‖I1,n‖0→0 ≤ M∗(R0/n)(ecR0 + γn) ≤ K0/n,

‖I2,n‖0→0 ≤ M∗R∞(γ̄n + γn) ≤ K0/n,

‖I3,n‖0→0 ≤ (M∗/π)
∫ R

0

(e−ncs + γn) ds ≤ K0/n,

‖I4,n‖0→0 ≤ (M∗R∞/π)(γ̄n + γn) ≤ K0/n.

These estimates in (18) yield

‖A(t)(rn(hA(t)) − γnI)‖0→0 = h−1‖A(rn(A)− γnI)‖0→0 ≤ 4K0/(nh).

Therefore, for ω0 = 0, (17) holds with h̄ = +∞.
Assume that ω0 6= 0. If ω0 > 0, let h̄ > 0 be such that all the poles of rh(z)

lay outside the sector Sθ. If ω0 < 0, let h̄ = | ln γ̄|/|ω0|. For 0 < h < h̄, we set
rh(z) = r(z + hω0). Fix 0 < h < h̄, t ∈ J and set A = h(A(t) − ω0I). Notice that
A satisfies H1, but with ω0 = 0. Now, for n ≥ 1, we have

A(rn
h(A)− γnI) =

1
2πi

∫
Γn

z(rn
h(z)− γn)(zI −A)−1 dz.(19)

It is not hard to see, due to our choice of h̄, that there exists K1 > 0, R > 0,
γ̄ ∈ (0, 1) and c > 0, such that rn

h(z) satisfies the following estimates, that are
similar to the ones satisfied by r(z) in (17):

|rh(z)n| ≤


K1e
cn|z|eω0nh, if |z| ≤ R, z /∈ Sθ∗ ,

K1e
−cn|z|eω0nh, if |z| ≤ R, z ∈ Sθ∗ ,

K1γ̄
neω0nh, if |z| ≥ R, z ∈ Sθ∗ .

Then, by partitioning Γn as we did in the previous case, we can estimate the integral
in (19) and show that there exists K2 > 0 such that

‖A(rn
h(A) − γnI)‖0→0 ≤ K2e

ω0nh/n.
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On the other hand, it is known (see [6, 7, 16, 17]) that there exists K3 > 0 such
that

‖rn(hA(t))‖0→0 ≤ K3e
ω0nh.

Therefore,

‖A(t)(rn(hA(t)) − γnI)‖0→0 ≤ |ω0|(‖rn(hA(t))‖0→0 + γn)

+ h−1‖A(rn
h(A) − γnI)‖0→0

≤ |ω0|(K3e
ω0nh + eω0nh) + K2e

ω0nh/(nh),

and the lemma is proved, since it is clear that eω0nh ≤ K4e
ω̃0nh/(nh), for some

K4 > 0.
For each t ∈ J , we consider the norm ‖ · ‖t

1 in X1 = D defined by ‖x‖t
1 =

‖x‖+ ‖A(t)x‖, for x ∈ X1. Because of H2, we have

(1 + L|t− s|α)−1‖x‖t
1 ≤ ‖x‖s

1 ≤ (1 + L|t− s|α)‖x‖t
1, x ∈ X1, t, s ∈ J.

(20)

For µ ∈ (0, 1), ‖ · ‖t
µ stands for the norm in the intermediate space Xµ = [X, X1]µ

obtained by means of the complex interpolation method, between (X, ‖ · ‖) and
(X1, ‖ · ‖t

1). The product space Xk
µ, k ≥ 1 integer and 0 ≤ µ ≤ 1, is endowed

with the maximum norm component-wise. The norm in Xk
µ is also denoted by

‖ · ‖t
µ. Given l, k ≥ 1 integers and ν ∈ [0, 1], the operator norm corresponding to

a bounded operator F : (X l
µ, ‖ · ‖s

µ) → (Xk
ν , ‖ · ‖t

ν) is denoted by ‖F‖s→t
µ→ν , s, t ∈ J .

For µ = ν = 0, we simply set ‖F‖0→0 instead of ‖F‖s→t
0→0. At first glance, it

appears more natural to fix t∗ ∈ J and consider always the norm ‖ · ‖t∗
1 in X1.

In this way, we could have fixed norms in the product spaces X l
µ and Xk

ν and,
consequently, we could avoid the cumbersome notation above for the norm of the
operators F : X l

µ → Xk
ν . However, with our technique, such a choice of the norm

in X1 leads to an extra factor in the estimates in Theorem 1.1. This extra factor
turns out to be of the form ecT , where c > 0 is independent of L, and, with this
factor, we could not prove any result on asymptotic stability.

A matrix M ∈ Ck×l is identified with the operator M⊗I : X l
µ → Xk

µ. For t ∈ J
such that t + h ∈ J , we set B(t), B0(t) : Ds ⊂ Xs → Xs the operators defined
by B(t) = diag(A(t + c1h), . . . , A(t + csh)) and by B0(t) = diag(A(t), . . . , A(t)),
respectively.

The solvability of the equations of the stages (4) is a direct consequence of the
following lemma.

Lemma 2.3. There exists K > 0 and there exists h̄ > 0, with h̄ depending on
M , θ, the Runge–Kutta method, L and α, such that, for t ∈ J and 0 < h < h̄
with t + h ∈ J , the operators (I − hAB(t)), (I − hAB0(t)) : Ds ⊂ Xs → Xs are
boundedly invertible with

‖(I − hAB(t))−1‖0→0 ≤ K, ‖(I − hAB0(t))−1‖0→0 ≤ K.

Proof. As shown in the proof of Theorem 4.1 in [10], there exist constants K1 > 0
and h0 > 0, with h0 depending only on M , θ ω0 and A, such that, for 0 < h < h0,
the inverse (I − hAB0(t))−1 exists as a bounded operator in Xs and

‖(I − hAB0(t))−1‖0→0 ≤ K1, ‖hB0(t)(I − hAB0(t))−1‖0→0 ≤ a(1 + K1),
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where a = ‖A−1‖0→0. Fix 0 < h < h0. Then it makes sense to define the operator
∆(h) : Xs → Xs by ∆(h) = hA(B(t)−B0(t))(I − hAB0(t))−1. By hypothesis H1,
we have

‖∆(h)‖0→0 ≤ ‖A‖0→0Lhα‖hB0(t)(I − hAB0(t))−1‖0→0 ≤ K0Lhα.

By writing
I − hAB(t) = (I −∆(h))(I − hAB0(t)),

we see that, for h < h̄ := min{h0, (2K0L)−1/α}, the inverse (I − hAB(t))−1 exists
and

‖(I − hAB(t))−1‖0→0 ≤ ‖(I − hAB0(t))−1‖0→0

+∞∑
k=0

‖∆(h)‖k
0→0 ≤ 2K1.

Let h̄ > 0 be the threshold given by Lemma 2.3. For t ∈ J and 0 < h < h̄ with
t + h ∈ J , we set

R(t, h) = (I − hAB(t))−1, R0(t, h) = (I − hAB0(t))−1.

In this way, the discrete operator associated with the Runge–Kutta method in (5)
is well defined for 0 < h < h̄ and is given by

r(t + h, t) = I + hbT B(t)R(t, h)e.

Furthermore, for s, t ∈ J and 0 < h < h̄ with s + h, t + h ∈ J , we set

δ(t, s, h) = B(t)R(t, h)−B0(s)R0(s, h).

(Several useful estimates for these operators are collected in the next lemma.)
In the rest of the paper h̄1 > 0 denotes the the minimum of the thresholds given

in Lemmas 2.2 and 2.3 and of L−1/α.

Lemma 2.4. There exists K > 0, such that, for s, t ∈ J , s ≤ t, and 0 < h < h̄1

with t + h ∈ J , the following estimates hold:

‖R(t, h)‖t→t
µ→µ ≤ K, ‖R0(t, h)‖t→t

µ→µ ≤ K, 0 ≤ µ ≤ 1,(21)

‖R(t, h)‖t→t
0→1 ≤ Kh−1, ‖R0(t, h)‖t→t

0→1 ≤ Kh−1,(22)
‖δ(t, s, h)‖s→t

µ→ν ≤ hµ−ν−1KL max{(t− s)α, hα}, µ, ν ∈ [0, 1],(23)

‖r(t + h, t)− γ‖t→t
0→1 ≤ Kh−1.(24)

Proof. For x ∈ Xs
1 and t ∈ J , we set

‖x‖∗t1 = ‖x‖+ ‖B(t)x‖.
Because of H2 and the choice of h̄1, we have

(1/2)‖x‖∗t1 ≤ ‖x‖t
1 ≤ 2‖x‖∗t1 , x ∈ Xs

1 , t ∈ J.(25)

By Lemma 2.3 we know that (21) holds for µ = 0. Then, by interpolation, only
the case µ = 1 must be considered. Let a > 0 be a bound for the norms of A, A−1,
bT and e as operators in either the space X0 or the space X1, and let K0 be the
constant provided by Lemma 2.3. Notice that

B(t)R(t, h) = B(t)(I − hAB(t))−1 = A−1AB(t)(I − hAB(t))−1

= A−1(I − hAB(t))−1AB(t).
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Hence, by (25),

‖R(t, h)‖t→t
1→1 ≤ 2(‖R(t, h)‖t→t

0→0 + ‖B(t)R(t, h)‖t→t
1→0)

≤ 2(K0 + a2‖R(t, h)B(t)‖t→t
1→0)

≤ 2(K0 + a2‖R(t, h)‖0→0‖B(t)‖t→t
1→0)

≤ 2(K0 + 2a2K0)
≤ 2(1 + a2)K0;

thus, (21) holds for R(t, h), with K = 4(1 + a2)K0.
Notice that we also have

B(t)R(t, h) = A−1AB(t)(I − hAB(t))−1

= h−1A−1(R(t, h)− I).

Hence, again by (25),

‖R(t, h)‖t→t
0→1 ≤ 2(‖R(t, h)‖t→t

0→0 + ‖B(t)R(t, h)‖t→t
0→0)

≤ 2(K0 + h−1a2(K0 + 1)),

and (22) holds for R(t, h).
The proofs of (21) and (22) for R0(t, h) are identical.
On the other hand, after some manipulation, we see that

δ(t, s, h) = h−1A−1(hAB(t)R(t, h) − hAB0(s)R0(s, h))
= h−1A−1(R(t, h)−R0(s, h))
= A−1R(t, h)A(B(t)−B0(s))R0(s, h).

Therefore, for µ, ν ∈ {0, 1}, we have

‖δ(t, s, h)‖s→t
µ→ν ≤ a2‖R(t, h)‖t→t

0→ν‖B(t)−B0(s)‖s→t
1→0‖R0(s, h)‖s→s

µ→1.

(26)

By hypothesis H2 and (25), we also have

‖B(t)−B0(s)‖s→t
1→0 ≤ 2L(h + |t− s|)α ≤ 8L max{|t− s|α, hα}.

This estimate together with (21) and (22), in (26), yield (23), for µ = 0, 1 and
ν = 0, 1. By interpolation, we obtain (23) for the remaining values µ, ν ∈ (0, 1).

Furthermore, we have

‖r(t + h, t)− γ‖t→t
0→1 ≤ ‖r(t + h, t)− r(hA(t))‖t→t

0→1 + ‖r(hA(t)) − γ‖t→t
0→1

= h‖bT δ(t + h, t, h)e‖t→t
0→1 + ‖r(hA(t))− γ‖t→t

0→1

= 4a2LKhα−1 + 4Keω0h−1

≤ 4(a2 + eω0h)Kh−1,

since Lhα ≤ 1.

3. Proof of the main result

Proof of Theorem 1.1. Fix 0 < h < h̄1. We know that the stage equations are
uniquely solvable for such values of h. Let tj , 0 ≤ j ≤ N , be a sequence in J with
step size h. For 0 ≤ j, n ≤ N − 1, denote

δj,n = h−1(r(tj+1, tj)− r(hA(tn)))

= bT B(tj)(I − hAB(tj))−1e− bT B0(tn)(I − hAB0(tn))−1e

= bT δ(tj , tn, h)e
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and, for 0 ≤ n ≤ m ≤ N integers,

Fm,n =
m−1∏
k=n

r(tk+1, tk)− γm−n and Ej
m,n = rm−n(hA(tj))− γm−n,

where we take
n−1∏
k=n

r(tk+1, tk) = r0(hA(tn)) = γ0 = I.

We begin by proving (7). Let 0 ≤ µ < 1. Because of the well-known telescopic
identity

Fm,n =
m∑

j=n+1

(m−1∏
l=j

r(tl+1, tl)
)(

r(tj , tj−1)− γ
)
γj−n−1(27)

and Lemmas 2.2 and 2.3, we conclude that Fm,n is a bounded operator from X to
Xµ. Let us point out that (27) is useless in order to establish bound (7), though
the existence of the number ‖Fm,n‖tn→tm

0→µ is required in the forthcoming argument.
We also have the similar identity

Fm,n − En
m,n =

m∑
j=n+1

(m−1∏
l=j

r(tl+1, tl)
)(

r(tj , tj−1)− r(hA(tn))
)
rj−1−n(hA(tn))

= h

m∑
j=n+1

(Fm,j + γm−j)δj−1,n(En
j−1,n + γj−n−1).

Hence, because of (20),

‖Fm,n‖tn→tm

0→µ ≤ ‖En
m,n‖tn→tm

0→µ

+ h

m∑
j=n+1

‖Fm,j‖tj→tm

0→µ ‖δj−1,n(En
j−1,n + γj−1−n)‖tn→tj

0→0

+ h

m∑
j=n+1

κγm−j‖δj−1,n(En
j−1,n + γj−1−n)‖tn→tj

0→µ ,

(28)

where κ = (1 + LT α).
On the one hand, by Lemma 2.2, there exists K1 such that ‖En

j,n‖tn→tn
0→µ ≤

(K1/2)eω̃0(tj−tn)(tj − tn)−µ, 0 ≤ j ≤ N . Moreover, by Lemmas 2.2 and 2.4, there
exists a constant K2 such that for n + 2 ≤ j ≤ m and either σ = 0 or σ = µ, we
have

‖δj−1,nEn
j−1,n‖tn→tj

0→σ ≤ ‖δj−1,n‖tn→tj

1→σ ‖En
j−1,n‖tn→tn

0→1

≤ 2h−σL(K2/2)eω̃0(tj−1−tn)(tj − tn)α(tj−1 − tn)−1

≤ 2LK2e
ω̃0(tj−1−tn)h−σ(tj − tn)α−1,

and

‖δj−1,n‖tn→tj

0→σ ≤ 2(K2/2)Lh−1−σ(tj−1 − tn)α ≤ 2K2Lh−1−σ(tj − tn)α,

since (tj−tn) ≤ 2(tj−1−tn) in the range n+2 ≤ j ≤ m. Furthermore, for j = n+1,
by (23), we have the analogous estimate

‖δj−1,n‖tn→tj

0→σ = ‖δn,n‖tn→tn+1
0→σ ≤ 2L(K2/2)h−1−σhα ≤ 2LK2h

−σ(tj − tn)α−1.
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Thus, for n + 2 ≤ j ≤ m, we deduce that

‖δj−1,n(En
j−1,n + γj−1−n)‖tn→tj

0→σ

≤ ‖δj−1,nEn
j−1,n‖tn→tj

0→σ + ‖δj−1,n‖tn→tj

0→σ γj−1−n

≤ 2LK2e
ω̃0(tj−1−tn)h−σ((tj − tn)α−1 + h−1(tj − tn)αγj−n−1),

and, for j = n + 1, that

‖δj−1,n(En
j−1,n + γj−1−n)‖tn→tj

0→σ

≤ 2LK2e
ω̃0(tj−1−tn)h−σ((tj − tn)α−1 + h−1(tj − tn)αγj−n−1).

Therefore, by using these estimates in (28), we get

‖Fm,n‖tn→tm

0→µ ≤ κK1e
ω̃0(tm−tn)(tm − tn)−µ

+ 2LK2h

m∑
j=n+1

‖Fm,j‖tj→tm

0→µ eω̃0(tj−1−tn)

× ((tj − tn)α−1 + h−1(tj − tn)αγj−n−1)

+ 2κLK2e
ω̃0(tm−tn)h1−µ

×
m∑

j=n+1

(γm−j(tj − tn)α−1 + h−1(tj − tn)αγm−n−1).

For the proof of (7) we apply Lemma 2.1, considering that

ξj = e−ω̃0(tm−tm−j)‖Fm,m−j‖tm−j→tm

0→µ , 0 ≤ j ≤ m− n,

with C1 = κK1, C2 = 2K2L and C3 = 2κK2L. We take h̄, the minimum of h̄1 and
of the corresponding threshold given by Lemma 2.1. Notice that (20) is applied
again, so that the presence of another factor κ2 is needed in (7).

Assume now that 0 < ν ≤ 1. As before, identity (27) shows that Fm,n is a
bounded operator from Xν onto X1. Now we write

Fm,n − Em
m,n = h

m−1∑
j=n

(Em
m,j+1 + γm−j−1)δm,j(Fj,n + γj−n).

Hence,

‖Fm,n‖tn→tm
ν→1 ≤‖Em

m,n‖tn→tm
ν→1

+ h

m−1∑
j=n

‖(Em
m,j+1 + γm−j+1)δm,j‖tj→tm

1→1 ‖Fj,n‖tn→tj

ν→1

+ h

m−1∑
j=n

‖(Em
m,j+1 + γm−j+1)δm,j‖tj→tm

ν→1 κγj−n.

(29)
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Let us take norms in (29). Arguing as before and using Lemmas 2.2 and 2.4, it
is possible to prove that there exist constants K1 and K2 such that

‖Fm,n‖tn→tm
ν→1 ≤ κK1e

ω̃0(tm−tn)(tm − tn)ν−1

+ 2LK2h
m−1∑
j=n

eω̃0(tm−tj)((tm − tj)α−1 + h−1(tm − tj)αγm−j−1)‖Fj,n‖tn→tj

ν→1

+ 2κLK2e
ω̃0(tm−tn)hν

m−1∑
j=n

((tm − tj)α−1γj−n + h−1(tm − tj)αγ∗m−n).

Now (8) is obtained by a direct application of Lemma 2.1, if we consider that
ξj = e−ω̃0(tn+j−tn)‖Fn+j,n‖tn→tj+n

0→µ , 0 ≤ j ≤ m − n, C1 = κK1, C2 = 2K2L,
C3 = 2κK2L, and we take h̄ the minimum of h̄1 and of the corresponding threshold
given by Lemma 2.1.

Finally, let us prove (9). Notice that now we cannot proceed as before, because
the value η = 1 is not covered by Lemma 2.1. If N = 1, then we have directly

‖F1,0‖t0→t1
0→1 ≤ ‖E1,0‖t0→t1

0→1 + ‖δ1,0‖t0→t1
0→1 ≤ 2K2h

−1 + 2LK1h
−1,

for some constants K1 and K2, as required. Let N ≥ 2. We set J = [N/2] and
write

FN,0 = FN,J+1FJ,0 + γN−JFJ,0 + γJFN,J+1,

whence

‖FN,0‖t0→tN
0→1 ≤ ‖FN,J+1‖tJ→tN

0→1/2 ‖FJ,0‖t0→tJ

1/2→1(30)

+ κγN−J‖FJ,0‖t0→tJ
0→1 + κγJ‖FN,J+1‖tJ+1→tN

0→1 .

The first term on the right side of (30) is estimated by means of (7) and (8). Now
let us estimate the central term γN−J‖FJ,0‖t0→tJ

0→1 . By (8) with ν = 1, we can bound

‖
m−1∏
l=j

r(tl+1, tl)‖tj→tm

1→1 ≤ κγm−j + ‖Fm,j‖tj→tm

1→1 ≤ κ + ‖Fm,j‖tj→tm

1→1 .

Therefore, by taking norms in identity (27) with m = J and n = 0 and applying
(24) we conclude that

γN−J‖FJ,0‖t0→tJ
0→1

≤ γN−J
J∑

j=1

‖
J−1∏
l=j

r(tl+1, tl)‖tj−1→tJ

1→1 ‖r(tj , tj−1)− γ‖tj−1→tj−1
0→1 γj−1

≤ κγN−J
J∑

j=1

2(κ + ‖FJ,j‖tj→tJ

1→1 )Kh−1γj−1.

The final term is estimated in a similar way. These estimates together in (30) yield
(9) because ‖FJ,j‖tj→tJ

1→1 is bounded.

Remark. We can also prove the first part of Theorem 1.1 by constructing the dis-
crete fundamental solution in a similar way to the continuous case. In fact, this is
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the idea used for the backward Euler method in [19]. For instance, when γ = 0, it
turns out that it is possible to obtain the representation

Fm,n = r(hA(tn))m−n + h

m∑
j=n

r(hA(tn))m−j∆j,n, 0 ≤ n ≤ m ≤ N,

where ∆l,n : X → X are the linear and bounded operators defined by the recurrence

∆l−1,n = δl−1,nrl−n−2(hA(tn))

+ h

l−2∑
j=n

δl−1,jr
l−j−2(hA(tj))∆j,n, 0 ≤ n ≤ l ≤ N,

starting from ∆n,n = 0. These operators may be estimated by using Lemma 2.1.
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