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EXAMPLES OF GENUS TWO CM CURVES
DEFINED OVER THE RATIONALS

PAUL VAN WAMELEN

Abstract. We present the results of a systematic numerical search for genus
two curves defined over the rationals such that their Jacobians are simple and
have endomorphism ring equal to the ring of integers of a quartic CM field.
Including the well-known example y2 = x5−1 we find 19 non-isomorphic such
curves. We believe that these are the only such curves.

1. Introduction

It is well known that there are only a finite number of elliptic curves defined
over the rationals with Complex Multiplication. We would like to consider the
analogous question for genus two curves. In particular we will look for examples
of genus two curves defined over the rationals such that their Jacobians are simple
and have endomorphism ring equal to the ring of integers of a quartic CM field.
We believe that we have found all such examples. Note though that we did not
consider the case of non-simple Jacobians, nor the case where the endomorphism
ring is a non-maximal order in a CM field. The curves we found are correct to high
precision, but we did not prove that they have Complex Multiplication.

We look for such curves as follows. We start out with a list of quartic CM fields
ordered by discriminant. Then it is easy to construct a torus with endomorphism
ring equal to the ring of integers of such a field (see section 2). Now we can make
these tori into abelian varieties by finding a Riemann form on the torus. In section
3 we see how to find all distinct Riemann forms. This leads to an explicit algorithm
for writing down all abelian varieties with endomorphism ring equal to the ring of
integers in a given CM field. Most of the theory in these two sections can also be
found in [4] or [11] (see also [12]).

Now we can use the theory of theta functions to compute (to high precision)
an equation for a curve with Jacobian equal to a given abelian surface. This is
explained in section 4. This curve is in a canonical form, and we must finally
address the question of whether such a curve can be defined over the rationals.
Mestre’s solution to this problem is recalled in section 5. Section 6 contains some
notes on the implementation of these ideas, and Section 7 briefly discusses the
results.
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2. Constructing a torus

For the rest of this paper F will be a CM-field with [F : Q] = 2n. That is, F is
a totally imaginary quadratic extension of a totally real field F+. Later we will set
n = 2. By a CM type of F we mean a set Φ of one half of the embeddings of F into
C such that no two of them are complex conjugate. Recall that if A is a complex
torus of dimension n such that F ⊂ End(A)Q, then the complex representation of
End(A)Q is isomorphic to

∑
φi∈Φ φi for some CM type Φ. We say A is of type

(F, Φ).

Theorem 1. 1. If a is a lattice in F and Φ is a type, then Cn/Φ(a) is a complex
torus of type (F, Φ).

2. If A is a complex torus of type (F, Φ), then there exists a lattice a in F such
that A is complex isomorphic to Cn/Φ(a).

3. If Φ is a simple type and a is a fractional ideal of F , then End(Cn/Φ(a)) ∼=
OF .

Proof. 1 and 2 are just i) and ii) of [4, Thm 1.4.1]. For 3 recall that if the type is
simple the torus is simple ([4, 1.3.5]), and if the torus is simple End(A)Q = F ([4,
Thm 1.3.3.i]). Now [4, Thm 1.4.1.iii] says that the endomorphism ring is given by
all α such that αa ⊂ a. So if a is a fractional ideal the endomorphism ring is the
ring of integers.

Theorem 2. If a and b are two fractional ideals in F and Φ is a simple type, then
the two tori Cn/Φ(a) and Cn/Φ(b) are isomorphic if and only if a and b are in the
same ideal class.

Proof. This follows directly from [4, Thm 1.4.2].

We are interested in the case n = 2. In this case we can easily decide whether a
given type is simple or not. From the fact that in a CM field complex conjugation
commutes with any other Galois element we see that the only possibilities for the
Galois group of a degree 4 CM field are the cyclic group of order 4, the Klein 4-group
and the dihedral group of order 8. If the Galois group is the Klein 4-group, then
the field is biquadratic and we see that the type must be lifted from an imaginary
quadratic subfield and is therefore not simple. In the other two cases the type is
simple.

3. Finding a Riemann form

In the previous section we saw that for a given non-biquadratic quartic CM field
F , there is a finite number of tori whose endomorphism ring is the ring of integers
in F . For a torus to be an abelian variety it must admit a Riemann form. So we
now need to decide which of these tori admit Riemann forms, and also whether
there could be more than one Riemann form for a given torus.

Let DF/Q be the different of F and dF/Q its discriminant. Let a bar denote
complex conjugation.

Theorem 3. 1. If ξ is such that
(a) F = F+(ξ), ξ2 ∈ F+ and Im(φi(ξ)) > 0 for all φi ∈ Φ, and
(b) DF/Qaa = (ξ−1) for some fractional ideal a of F ,
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then

E(z, w) =
n∑

j=1

φj(ξ)(zjwj − zjwj).(1)

defines a principal polarization of type (F, Φ) on Cn/Φ(a).
2. If (F, Φ) is a simple type, then all principal polarizations of type (F, Φ) on

Cn/Φ(a) are given by such a ξ.

Proof. Clearly E(z, w) = −E(w, z) and

E(iz, w) = −i

n∑
j=1

φj(ξ)(zjwj + zjwj)

is symmetric positive definite. Furthermore we have E(Φ(α), Φ(β)) = trF/Q(ξαβ),
and so E will be integral valued on Φ(a) if and only if ξαβ ⊂ D−1

F/Q. This proves
that E is a non-degenerate Riemann form on Cn/Φ(a). Note that if {αi}n

i=1 is a
basis for the ideal a then det(trF/Q(ξαiαj)) = NF/Q(ξaa)dF/Q; that is, if condition
1b holds, then det(E) = 1 and E is a principal polarization.

For the converse, we see from [4, Thm 1.4.5] that every non-degenerate Riemann
form E on Cn/Φ(a) is given by (1) for some ξ satisfying condition 1a. We have seen
that, as E is integral valued, ξaa ⊂ D, and, as E defines a principal polarization,
the norms of these two ideals are in fact equal. But then the ideals are equal.

From now on (A, ξ) will denote an abelian variety with a principal polarization
given by ξ as in the theorem.

We now address the question of whether we can find a ξ satisfying the conditions
of the theorem for any Cn/Φ(a).

Theorem 4. Let F = F+(
√−m) with m ∈ OF+ . Then we can find a fractional

ideal a ⊂ F and an element b ∈ OF+ such that DF/Q/(
√−m) = aab.

Proof. Using the transitivity of the different, we will first consider the extension
F/F+ and its different DF/F+ . Let P be a ramified (over F+) prime of F . Assume
that it occurs to an odd power, k, in the prime decomposition of DF/F+/(

√−m).
Then it occurs to the power 2k in the prime factorization of DF/F+DF/F+/(m). If
p is the prime of F+ such that pOF = P2, then recalling that N(DF/F+) = dF/F+ ,
we see that p occurs to the odd power k in the prime factorization of dF/F+/mOF+ .
This, however, contradicts the fact that the discriminant dF/F+ differs by the square
of an ideal from mOF+ . To see this recall that the discriminant is given by the
greatest common divisor ideal of all discriminants of bases of F over F+ consisting
of algebraic integers and it is easy to verify that

disc(a1 + b1

√−m, a2 + b2

√−m) = 4(a2b1 − a1b2)2m.

So we can now write DF/F+/(
√−m) = f2gh, where f consists of ramified primes,

g consists of split primes and h of inert primes. Notice that as only ramified primes
divide D, DF/F+/(

√−m) = DF/F+/(
√−m). This implies that if P is a prime

in g then PP must divide g, and we can write g = g1g1 for some ideal g1. The
ideal h consists of inert primes, so we see that we can write h = h0OF for some
ideal h0 ⊂ F+. As the norm map from the ideal class group of F to that of F+
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is onto ([14, Theorem 10.1]), there exist an ideal h1 ⊂ F and c1 ∈ F+ such that
h = h1h1c1. So we have

DF/F+/(
√−m) = fg1h1fg1h1c1

Again using the fact that the norm map on class groups is onto, we can find an
ideal d1 and an element d1 ∈ F+ such that DF+/QOF = d1d1d1. Setting a = fg1h1d1

and b = c1d1, we get

DF/Q/(
√−m) = DF/F+DF+/Q/(

√−m) = aab.

This shows that for a simple CM field F , if we take a, b and m as in the theorem
and set ξ = (

√−mb)−1 and choose Φ in such a way that Im(φi(ξ)) > 0 for all
φi ∈ Φ, then ξ defines a principal polarization of type Φ on Cn/Φ(a−1). So we have
at least one principally polarized abelian variety whose endomorphism ring equals
OF .

Next we want to address the question of how many non-isomorphic abelian va-
rieties with complex multiplication by OF we can construct.

Theorem 5. Two principally polarized simple abelian varieties (Cn/Φ(a), ξ1) and
(Cn/Φ(b), ξ2) of the same type are isomorphic if and only if we can find an element
γ ∈ F such that

1. γa = b and
2. ξ1 = γγξ2.

Proof. This follows directly from Theorem 2 and [4, Section 3.5.2]. See also [12,
Theorem 3.19].

Corollary 1. Two polarizations on Cn/Φ(a) of the same simple type given by ξ1

and ξ2 give isomorphic abelian varieties if and only if ξ1 = uuξ2 for some unit
u ∈ O∗

F .

We have now shown enough to see that the following is a valid algorithm for
finding all principally polarized abelian varieties with CM by the ring of integers of
a given simple CM field.

Algorithm 1. To find all non-isomorphic principally polarized abelian varieties
with CM by OF :

1. Find all ideal classes A such that AA is the ideal class of the codifferentD−1
F/Q.

2. Find a set of coset representatives of the units in OF+ modulo norms of units
of OF .

3. For each ideal class found in 1 pick an ideal a and find a generator b of
DF/Qaa.

4. For each ideal class in step 3, if there exists a unit u in OF such that ub = −ub,
set ξ0 = (ub)−1 and go to the next step.

5. For each unit u+ found in 2, choose a type Φ such that if ξ = u+ξ0 then
Im(φi(ξ)) > 0 for each φi ∈ Φ.

6. ξ now defines a principal polarization of type Φ on Cn/Φ(a), and we can
compute the corresponding element τ of the Siegel upper half-space hn.
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Proof. By Theorem 1 and Theorem 2 we see that any torus with CM by the ring
of integers of F is given by Cn/Φ(a) for one a from each ideal class A. By Theorem
3 only a torus coming from an ideal class A such that AA is the ideal class of the
codifferent can admit a Riemann form. This is not a sufficient condition, but if
some a ∈ A gives a torus admitting a Riemann form, then by Theorem 5 any a ∈ A
will (and they will give isomorphic polarized abelian varieties).

Step 4 now checks the sufficient condition of Theorem 3 for the ideal a. Notice
that (for now, in the case of a degree 4 field) we can decide whether such a unit
exists by a finite procedure. Indeed, let u0 be a primitive root of unity in F and
u1 a fundamental unit. Find k and h such that b/b = uk

0 and u1/u1 = uh
0 , and set

u = ud1
0 ud2

1 . Then finding u such that ub = −ub is the same as finding d1 and d2

such that

2d1 + hd2 ≡ m− k mod 2m,

where 2m is the number of roots of unity in F . The same idea will clearly also
work for larger CM fields. Theorem 4 just says that we will be able to find such a
unit for some ideal class A.

The unit found in step 4 is clearly only unique up to a unit in F+. On the other
hand Corollary 1 says that we need not change ξ by the norm of a unit from F .
This shows that step 5 will produce all the principal polarizations on all tori with
CM by the ring of integers in F .

Note that this algorithm might find a single polarized abelian variety more than
once. Indeed, it is not clear when two polarized abelian varieties of different types
are isomorphic. In particular, if we change ξ by a unit that is not totally positive,
we still get a principal polarization, but with a different type. We only consider the
following case. Here, besides a bar, ρ also denotes complex conjugation.

Proposition 1. Let Cg/Φ(a) with polarization given by ξ be the canonically princi-
pally polarized Jacobian of a curve defined over a real number field. Then Cg/ρΦ(a)
with polarization given by −ξ gives the same polarized abelian variety.

Proof. The essential ingredient is [4, Proposition 3.5.4]. We use the notation there.
First we show that if (A, C) is of type (K, Φ, a, ξ) with respect to θ then (Aρ, Cρ)
is of type (K, ρΦ, a,−ξ) with respect to θ×. Here θ×(z) = θ(z). Except for the
polarization, this follows directly from the definitions. For the polarization, recall
that by [4, Proposition 3.5.4] the Riemann form Eρ on Cg/ρΦ(a) that corresponds
to E(Φ(α), Φ(β)) = trF/Q(ξαβ) on Cg/Φ(a) satisfies

Eρ(ρΦ(α), ρΦ(β)) = −E(Φ(α), Φ(β))
= trF/Q((−ξ)αβ)

This shows that (Aρ, Cρ) has the Riemann form given by −ξ. Note that this first
part of the proposition is also a special case of [4, Theorem 7.3.1].

If A is the Jacobian of a curve C defined over a real number field, then A is
defined over the same number field and therefore A is isomorphic to Aρ. Recall
that the canonical polarization of a Jacobian is defined by the theta divisor, which
is {∑g−1

i=1 Pi−(g−1)O|Pi in C} for some fixed O ∈ C rational over the real number
field. Complex conjugation clearly fixes this divisor, and so (A, C) equals (Aρ, Cρ).
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4. Constructing a curve with a given Jacobian

In this section we want to find a genus two curve that has its Jacobian equal to
one of the abelian varieties we found in the previous section.

The principally polarized abelian varieties we constructed in the previous section
are 2 dimensional and simple. This means that the abelian surface is not isogenous
(and in particular not isomorphic) to the product of two elliptic curves. This in turn
means that the abelian surface is the Jacobian of a non-singular genus two curve
(see [5, Corollary 11.8.2 a)]). Any non-singular genus two curve is hyperelliptic and
can be put into Rosenhain normal form

y2 = x(x − 1)(x− λ1)(x− λ2)(x− λ3).

This of course is rather abstract, but there is an explicit method for computing a
Rosenhain normal form for a given element of the Siegel upper half-space. This
is done with the use of theta functions and Thomae’s identities. We will just give
the relevant formulas, but the interested reader can consult [8], [13]. The higher
dimensional theta function with characteristic is defined as follows.

For column vectors c′, c′′ ∈ R2g, z ∈ Cg and τ ∈ hn, the classical multi-variable
theta function is

θ[tc′; tc′′](tz, τ) =
∑

m∈Zg

exp(πi t(m + c′)τ(m + c′) + 2πi t(m + c′)(z + c′′)).

Thomae’s identities relate the λ’s in the Rosenhain normal form to theta func-
tions evaluated at z = 0. There is some freedom in the choice of characteristics,
but one possibility is the following. Set

ϑ1 = θ([0, 0; 1/2, 0], [0, 0], τ),
ϑ2 = θ([0, 0; 1/2, 1/2], [0, 0], τ),
ϑ3 = θ([0, 1/2; 1/2, 0], [0, 0], τ),
ϑ4 = θ([1/2, 0; 0, 0], [0, 0], τ),
ϑ5 = θ([1/2, 0; 0, 1/2], [0, 0], τ),
ϑ6 = θ([1/2, 1/2; 0, 0], [0, 0], τ)],

where τ is an element of Siegel upper-half space found above. Then

λ1 =
−ϑ2

1ϑ
2
3

ϑ2
6ϑ

2
4

, λ2 =
−ϑ2

2ϑ
2
3

ϑ2
6ϑ

2
5

, λ3 =
−ϑ2

2ϑ
2
1

ϑ2
4ϑ

2
5

.

Of course this curve is probably not defined over the rationals. Furthermore we can
only compute numerical approximations to the λ’s. If the curve can be defined over
the rationals, the λ’s will be algebraic numbers, and we might be able to recognize
the numeric approximations as such. In that case we might then be able to find
a linear transformation that results in a curve defined over the rationals. In some
of the simpler cases this method works, but in general we need more sophisticated
machinery.

5. When is a genus two curve defined over the rationals

An elliptic curve is defined over the rationals if and only if its j invariant is
rational. We might ask whether a similar thing happens for genus two curves.
Indeed this turns out to be the case, but the picture is somewhat more complicated.
Igusa defined three absolute invariants i1, i2 and i3 for genus two curves analogous
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to the j invariant for elliptic curves. They have the property that if these invariants
agree for two curves, the curves must be isomorphic over C. Unfortunately it is not
true that if these invariants are rational the curve can be defined over the rationals.
Recently Mestre showed how to decide whether a curve with given Igusa invariants
can be defined over the rationals.

The Igusa invariants are defined for a hyperelliptic curve

y2 = f(x),

where f(x) is a sextic with roots αi, i = 1, 2, . . . , 6, and leading term a6. We
first define the so-called integral invariants. To simplify notation we write (ij) for
αki − αkj . The integral invariants are

I2 = a2
6

∑
15

(12)2(34)2(56)2,

I4 = a4
6

∑
10

(12)2(23)2(31)2(45)2(56)2(64)2,

I6 = a6
6

∑
60

(12)2(23)2(31)2(45)2(56)2(64)2(14)2(25)2(36)2,

I10 = a10
6

∏
i<j

(ij)2.

where the subscript on the sums gives the number of possible combinations to sum
over. The (absolute) Igusa invariants are now defined by

i1 = I5
2/I10,

i2 = I3
2I4/I10,

i3 = I2
2I6/I10.

In case the hyperelliptic curve is given in the form y2 = f(x) where f(x) is a
quintic, we can think of it as a sextic with one root at infinity. Then, for purposes
of computing the Igusa invariants, we follow the convention that in the definition
of the integral invariants any term of the form αi −∞ equals 1.

As already mentioned, these invariants agree for two curves if and only if the two
curves are isomorphic [3, Corollary on p. 632]. Note that the integral invariants are
symmetric functions of the roots and these invariants can therefore be expressed
as rational functions of the coefficients of f(x). In particular we see that the Igusa
invariants are rational if the curve can be defined over the rationals. Unfortunately
the converse is not true. By using the Igusa invariants and Proposition 1 we can
reject some τ ∈ h as not belonging to curves defined over the rationals. Indeed if
τ and τ ′ correspond to the same torus but with polarizations given by ξ and −ξ,
then if their Igusa invariants are not equal the proposition says that they cannot
come from a curve defined over the rationals. Of course in general we need better
methods.

Mestre [7] gave a method for deciding whether a curve with given Igusa invariants
can be defined over a particular field.

Mestre constructs a conic L and a cubic M in P2 with coefficients in terms of
i1, i2 and i3.

For v ∈ P2 the conic L is defined by
tvLv = 0,
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where L is given by x + 6y 6x2 + 2y 2z
6x2 + 2y 2z 9x3 + 4xy + 6y2

2z 9x3 + 4xy + 6y2 6x2y + 2y2 + 3xz


and

x =
8

225
20i2 + i1

i1
,

y =
16

3375
−600i3 + i1 + 80i2

i1
,

z =
−64

253125
1
i21

(−10800000i1− 9i21 − 700i2i1

+3600i3i1 + 12400i22 − 48000i2i3).

Defining the cubic is somewhat more involved. First set

a =
−I2

120
,

b =
I2
2 + 20I4

135000
,

c =
−I3

2 − 80I2I4 + 600I6

121500000
,

d =
−9I5

2 − 700I3
2I4 + 12400I2I

2
4 + 3600I2

2I6 − 48000I4I6 − 10800000I10

49207500000000
.

These are the Clebsch invariants. For v ∈ P2 set

x1 = a6I4
10v1,

x2 = − I5
10i1v2

2153555
,

x3 =
260320520a24v3

i41
.

Then Mestre’s cubic is defined to be

M(v) =
∑

1≤i,j,k≤3

aijkxixjxk = 0,

where the aijk are given by

a111 = 8(a2c− 6bc + 9d),
a112 = 4(2b3 + 4abc + 12c2 + 3ad),
a113 = 4(ab3 + 4

3a2bc + 4b2c + 6ac2 + 3bd),
a122 = a113,

a123 = 2(2b4 + 4ab2c + 4
3a2c2 + 4bc2 + 3abd + 12cd),

a133 = 2(ab4 + 4
3a2b2c + 16

3 b3c + 26
3 abc2 + 8c3 + 3b2d + 2acd),

a222 = 4(3b4 + 6ab2c + 8
3a2c2 + 2bc2 − 3cd),

a223 = 2(− 2
3b3c− 4

3abc2 − 4c3 + 9b2d + 8acd),

a233 = 2(b5 + 2ab3c + 8
9a2bc2 + 2

3b2c2 − bcd + 9d2),

a333 = −2b4c− 4ab2c2 − 16
9 a2c3 − 4

3bc3 + 9b3d + 12abcd + 20c2d.
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It can be checked that the cubic can be given entirely in terms of the Igusa invari-
ants. Our definition of Mestre’s cubic is a multiple of Mestre’s definition, but as
we only care about the zeros it doesn’t matter.

Mestre showed that a genus 2 curve with Igusa invariants i1, i2 and i3 is defined
over the number field F if and only if the conic L has a F -rational point in P2

F . By
the Hasse-Minkowski theorem (see [9]) it is easy to decide whether a conic has a
rational point.

In fact, if the conic has a rational point we can find an explicit curve defined
over the rationals with the given Igusa invariants. That is because Mestre showed
that the Weierstrass points of such a curve are given by the points of intersection
of the conic L and the cubic M . This means we can do the following. If there is a
rational point on the conic there are infinitely many, and we can parametrize them
by v1 = f1(t), v2 = f2(t) and v3 = f3(t) where the fi are quadratic polynomials
with rational coefficients. If we substitute this into the cubic M we get a polynomial
f(t) of degree 6. Then y2 = f(t) is a rational equation for the curve.

6. Notes on implementation

The algorithm for finding elements of the Siegel upper half-space was imple-
mented in the Pari-GP package. In particular the package allows one to find
the ring of integers in a number field and to compute in such a ring, including
finding prime ideal decompositions, units, Galois elements, etc. There are also
tables of number fields available (anonymous ftp: megrez.math.u-bordeaux.fr
/pub/numberfields/). The table of quartic CM fields we used was extracted from
these tables.

To compute the Igusa invariants corresponding to a given element of the Siegel
upper half-space, we used both Mathematica and Pari-GP. The computation of
theta function values can be done by summing their defining series. As the terms
are exponential, the series converges very quickly. Unfortunately, in some cases this
was still not practical—many of the τ in the Siegel upper half-space had very small
imaginary part, so even though the convergence is fast we still would have needed
to sum a prohibitively large number of terms. To overcome this problem we first
applied a symplectic matrix to the τ ’s in order to maximize the imaginary part.
This can be done analogously to the well-known method of moving an element of
the complex upper half-space into the fundamental domain. We simply applied a
generator from [1, Theorem 1] for Sp2(Z) that increases the imaginary part of τ .
Then we moved τ back into the center strip and Minkowski-reduced τ . We repeated
this procedure until none of the generators increased the imaginary part of τ .

The Igusa invariants were computed accurate to approximately 300 decimal
places. If they were not complex we tried to recognize them as rational num-
bers by computing their continued fraction expansions and stopping as soon as at
least the first 90% of the digits of the fraction agreed with those of the real number.
If the corresponding rational had less than 125 digits in the numerator we assumed
that the real number was rational. In fact the largest rational Igusa invariant we
found had only 59 digits in the numerator.

To test whether a curve with rational Igusa invariants can be defined over the
rationals (and then to find such a curve) we need to find points on Mestre’s conic.
This is easy in theory but in practice it can lead to hard problems, in particular
the need to factor some large integers. Fortunately, for our examples the largest
factorizations were right at the limit of what can be done in reasonable time.
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All the curves that had rational Igusa invariants turned out to be definable over
the rationals.

Once the point on the conic was found, it is an easy matter to substitute into
Mestre’s cubic to find a rational equation for the curve. Unfortunately the equation
for the curve can be huge. The worst case for our examples gave a sextic with
coefficients with more that 5000 digits. To reduce these equations to a reasonable
size we used the following algorithm. First try to remove all powers of 30 from
the discriminant. If f(x) ≡ (x − a)6 mod p for some prime p, then p30 divides the
discriminant. In all our examples the converse was also true. It is easy to check that
if f(x) ≡ (x − a)6 mod p then f(px + a)/p6 has discriminant with the power of p
reduced by 30 (and still has integral coefficients). In this way we were able to reduce
all powers of primes to less than 30. After the discriminant is reduced we try to
apply a rational linear fractional transformation to f(x) in order to decrease the size
of the coefficients. It was enough to repeatedly apply a translation f(x) → f(x±1)
or an inversion combined with a translation f(x) → f(1/(x± 1))(x± 1)6 to reduce
the size of the coefficients.

As explained above, we searched only quartic CM fields that were either cyclic
or dihedral. We searched for all cyclic quartic CM fields up to discriminant 106;
there are 54 such fields. Note that the largest discriminant of a cyclic quartic
CM field with class number 1 or 2 is 240737 ([10],[2]). We searched all dihedral
quartic CM fields up to discriminant 79525 (307 fields) and those with 6 or less
different polarized abelian varieties up to discriminant 830816 (147 more fields).
At this point the computation just to check the number of polarizations became
too lengthy, so we further restricted consideration to fields with class number at
most 4. Nearly all fields with at most 6 polarizations up to this point satisfied this
condition anyway. Under this further restriction we went up to discriminant 106

(14 more fields). Note that by [6] the largest discriminant of a dihedral quartic CM
field with class number 1 is 756605.

7. The results

The results are contained in Table 1. Of these Spallek [12] has also found curves
(with the same Igusa invariants as ours) corresponding to the fields Q(

√
−2 +

√
2)

and Q(
√
−5 +

√
5).

A few things are worth pointing out.
1. Note that all the fields in the table have class number either 1 or 2.
2. The fields in the table are all cyclic.
3. There exist exactly 7 class number 1 quartic cyclic CM fields (see [10]). We

find one and only one curve with CM by each of these fields. (Note that there
are lots of dihedral CM fields with class number 1, but as noted none of them
gave a curve defined over the rationals).

4. There exist exactly 8 class number 2 quartic cyclic CM fields (see [2]). We
find exactly two (non-isomorphic) curves with CM by each of these fields
except the two fields Q(

√
−6 + 2

√
2) and Q(

√
−119 + 28

√
17), for which we

find no curve. For each of these fields we got two sets of Igusa invariants.
We were able to recognize them as non-rational elements of a quadratic field
(accurate to about 600 places). In the first case the one set of invariants was
the conjugates in Q(

√
2) of the other set. The same happened for the other

pair of invariants, but in Q(
√

17).
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Added in proof

After this paper was accepted, Bjorn Poonen pointed out to me that it is a
theorem that a genus 2 curve with CM by a quartic CM field with a dihedral
Galois group of order 8 cannot be defined over the rationals. See Proposition 5.17
in G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions
(Publications of the Mathematical Society of Japan, 11, Kann Memorial Lectures,
1), Princeton University Press, Princeton, NJ, 1994. MR 95e:11048
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ods in Algebraic Geometry (Castiglioncello, 1990), volume 94 of Progr. Math. Birkhäuser,
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