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TABLES OF MAXIMALLY EQUIDISTRIBUTED
COMBINED LFSR GENERATORS

PIERRE L’ECUYER

Abstract. We give the results of a computer search for maximally equidistri-
buted combined linear feedback shift register (or Tausworthe) random number
generators, whose components are trinomials of degrees slightly less than 32
or 64. These generators are fast and have good statistical properties.

1. Introduction

Linear Feedback Shift Register (LFSR) random number generators, also called
Tausworthe generators, are based on linear recurrences modulo 2 with primitive
characteristic polynomials. Efficient implementations are available for the case
where the characteristic polynomial is a trinomial and satisfies some additional
conditions. Trinomial-based generators have important statistical defects, but com-
bining them can yield generators that are relatively fast and robust. Such combi-
nations have been proposed and analyzed in [4, 9, 10]. In [4], it was explained how
to find combined generators with the best possible equidistribution properties in
some sense, within specified classes of combined LFSR generators. Three specific
combined generators, each with three components and period length near 288, were
also given. In the present paper, we provide the results of more extensive computer
searches, for combined generators with larger periods. The need for large periods
is supported by several arguments given, e.g., in [2, 3, 5]. The generators given
in [4] are for 32-bit computers. Since 64-bit computers are becoming increasingly
common, it is important to have good generators designed to fully use the 64-bit
words. Some of the generators proposed here do it.

The next section explains how we combine LFSR generators and recalls defini-
tions and properties. Section 3 gives specific combined generators of different sizes.
Section 4 provides computer implementations in C.

2. Combined LFSR generators and equidistribution

Consider the LFSR recurrence

xn = (a1xn−1 + · · ·+ akxn−k) mod 2,(1)
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whose characteristic polynomial is P (z) = zk − a1z
k−1 − · · · − ak. This is a linear

recurrence in the finite field F2 with two elements, 0 and 1. The recurrence has
period length ρ = 2k − 1 if and only if P is a primitive polynomial, which we now
assume. Let

un =
L∑

i=1

xns+i−12−i,(2)

where the step size s and the word length L are positive integers. If (x0, . . . , xk−1) 6=
0, and s is coprime to ρ, then the sequence (2) is also purely periodic with period ρ.
An LFSR (or Tausworthe) random number generator is one that outputs a sequence
{un, n ≥ 0} defined by (2).

Suppose now that we have J LFSR recurrences, the jth one having a primitive
characteristic polynomial Pj(z) of degree kj , and step size sj relatively prime with
ρj = 2kj − 1. Assume that the Pj(z) are pairwise relatively prime, that the ρj are
also relatively prime, and that these LFSRs use a common L. Let {xj,n, n ≥ 0} be
the jth LFSR sequence, and define xn = (x1,n + · · ·+xJ,n) mod 2 and un as in (2).
Equivalently, if {uj,n, n ≥ 0} is the output sequence from the jth LFSR, then un =
u1,n ⊕ · · · ⊕ uJ,n where ⊕ denotes the bitwise exclusive-or in the binary expansion.
The sequence {xn} is called the combined LFSR sequence and a generator that
produces this {un} is called a combined LFSR generator. In fact, {xn} follows
a recurrence with reducible characteristic polynomial P (z) = P1(z) · · ·PJ (z) [9].
Under our assumptions, the sequences {xn} and {un} have period length ρ =
(2k1 − 1) × · · · × (2kJ − 1). This type of combination is interesting because it
permits one to conciliate efficient implementation with statistical robustness, by
choosing the Pj as trinomials for which the recurrence is easy to implement and
runs fast, while making sure that P (z) has many non-zero coefficients and that the
combined generator has good equidistribution properties [1, 7, 10]. Of course, this
is not the only way of constructing generators with good equidistribution; for other
approaches, see, e.g., [5, 6, 8] and other references given there.

Let Tt be the set (in the sense of a multiset) of t-dimensional vectors of successive
output values, from all possible initial states:

Tt =
{
un = (un, . . . , un+t−1) | n ≥ 0, (x0, . . . , xk−1) ∈ {0, 1}k

}
.

Dividing the interval [0, 1) into 2` equal segments determines a partition of the unit
hypercube [0, 1)t into 2t` cubic cells of equal size, called a (t, `)-equidissection in
base 2, and the set Tt is said to be (t, `)-equidistributed if each cell contains the
same number of points of Tt. The latter is possible only if ` ≤ L and t` ≤ k. If Tt

is (t, `∗t )-equidistributed for 0 ≤ t ≤ k, where `∗t = min(L, bk/tc), then the (output)
sequence is called maximally equidistributed (ME). An ME sequence for which all
non-empty cells contain exactly one point, for t ≥ 1 and `∗t < ` ≤ L (i.e., when there
are more cells than points), is called collision-free (CF). ME-CF sequences enjoy
nice equidistribution properties; their point sets are very evenly distributed in all
dimensions, in terms of equidissections. Verifying whether a sequence is ME or ME-
CF amounts to computing the rank of a binary matrix that expresses the relevant
bits of un in terms of (x1,0, . . . , x1,k1−1), . . . , (xJ,0, . . . , xJ,kJ−1), for different values
of t, as explained in [4].

The above definitions of ME and ME-CF are based on the ` most significant
bits of each un, so when t is large, we look only at a few most significant bits.
What about the least significant bits? For the LFSR generators considered here,
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it turns out that any successive ` bits in each un have the same equidistribution
properties as the most significant ones. More specifically, let r be an integer such
that 0 ≤ r ≤ L− `, and define

vn = 2run mod 1 =
L−r∑
i=1

xr+ns+i−12−i.

Then, for any box C of the (t, `)-equidissection,{
vn = (vn, . . . , vn+t−1) ∈ C | n ≥ 0, (x0, . . . , xk−1) ∈ {0, 1}k

}
=

{
un = (un, . . . , un+t−1) ∈ C | n ≥ 0, (xr, . . . , xr+k−1) ∈ {0, 1}k

}
.

Therefore, the sequence {vn} has exactly the same (t, `)-equidistribution properties
as {un}.

3. Some maximally equidistributed collision-free generators

We now give ME-CF combined LFSR generators with word-lengths L = 32
and 64, whose components have recurrences with primitive trinomials of the form
Pj(z) = zkj − zqj − 1 with 0 < 2qj < kj , and with step size sj satisfying 0 < sj ≤
kj−qj < kj ≤ L and gcd(sj , 2kj −1) = 1. Components that satisfy these conditions
are implemented easily using the algorithm described in [4]. When they satisfy the
additional condition that

L− kj ≤ rj − sj(3)

for all j, then the initialization procedure in [4, p. 205] is not necessary. All the
parameter sets given in the forthcoming tables satisfy this additional condition.

For L = 32, three specific ME-CF generators with J = 3 were given in [4], and it
was reported that there are 4744 ME-CF generators with J = 4, k1 = 31, k2 = 29,
k3 = 28, and k4 = 25, among the 3.28 million that satisfy all our conditions except
for (3). Since that paper was published, several people have asked the author for
specific instances of such generators. Table 1 gives a partial list. These combined
generators have period lengths (231 − 1)(229 − 1)(228− 1)(225 − 1) ≈ 2113 and their
characteristic polynomials have degree 113. The 62 generators in Table 1 satisfy
(3). They all have (q1, q2, q3, q4) = (6, 2, 13, 3), so they have the same characteristic
polynomial P (z), which has 58 coefficients equal to zero and 55 coefficients equal
to 1.

The following tables give selected results of random searches for ME-CF gener-
ators with L = 64, and with J = 3, 4, and 5 components. Here, k = k1 + · · ·+ kJ

is the degree of the product polynomial associated with the combination, N1 is the
number of coefficients that are 1 in that polynomial, and lg ρ = lcm(k1, . . . , kJ ) is
(approximately) the logarithm in base 2 of the period length of the generator.

In Table 2, the first 4 generators have full period length

ρ = (2k1 − 1)(2k2 − 1)(2k3 − 1) ≈ 2k.

The remaining 6 do not have full period because the kj are not co-prime. Note
that for all generators in this table, N1 is rather small in comparison with k; that
is, the characteristic polynomials have many more zeros than ones.
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Table 1. ME-CF generators with L = 32 and J = 4.
s1 s2 s3 s4 s1 s2 s3 s4

1 18 2 7 13 32 4 16 8 3
2 13 3 4 9 33 22 17 4 6
3 24 3 11 12 34 21 17 4 13
4 10 4 2 6 35 20 17 7 8
5 16 4 2 12 36 19 17 11 6
6 11 5 4 3 37 4 17 11 7
7 17 5 4 6 38 12 17 11 15
8 12 5 11 9 39 15 18 4 9
9 23 5 11 12 40 17 18 4 15

10 23 6 7 8 41 12 18 7 4
11 14 8 2 9 42 15 18 8 11

12 22 8 7 4 43 6 18 11 13
13 21 8 11 4 44 8 19 2 9
14 10 9 8 2 45 13 19 4 2
15 22 9 11 9 46 5 19 8 3
16 3 10 4 15 47 6 19 8 11
17 24 10 7 8 48 24 19 11 5
18 21 10 8 4 49 6 20 2 10
19 12 10 8 15 50 13 20 4 10
20 17 10 11 6 51 24 21 2 7
21 3 11 4 12 52 14 21 8 13
22 9 11 4 13 53 10 22 8 13
23 9 11 7 4 54 7 22 8 14
24 11 12 4 10 55 15 23 8 5
25 20 12 7 15 56 9 23 11 4
26 17 12 11 11 57 20 24 4 8
27 21 13 4 14 58 16 24 4 14
28 11 14 8 7 59 20 24 4 14
29 6 14 8 13 60 23 24 7 3
30 20 15 7 13 61 14 24 8 10
31 12 16 2 10 62 16 24 11 12

Table 2. ME-CF generators with L = 64 and J = 3.
k1 k2 k3 q1 q2 q3 s1 s2 s3 k lg ρ N1

1 63 58 55 5 19 24 24 13 7 176 176 17
2 63 55 52 1 24 3 27 22 14 170 170 27
3 63 55 47 5 24 5 22 18 21 165 165 21
4 63 55 47 31 24 21 17 21 5 165 165 21
5 63 58 57 31 19 22 20 26 13 178 175 27
6 63 58 57 31 19 22 26 14 15 178 175 27
7 63 58 57 31 19 22 20 11 16 178 175 27
8 63 58 57 31 19 22 29 26 20 178 175 27
9 63 58 57 31 19 22 11 25 27 178 175 27

10 63 57 55 5 22 24 51 18 19 175 172 27

Table 3. Full-period ME-CF generators with L = 64, J = 4,
k = 223, and N1 = 49.

s1 s2 s3 s4 s1 s2 s3 s4

1 18 28 7 8 5 18 22 16 6
2 26 20 11 7 6 30 28 17 9
3 19 25 12 9 7 17 28 18 6
4 18 31 13 6 8 12 8 22 9
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Table 4. ME-CF generators with L = 64, J = 4, k = 233, lg ρ =
230, and N1 = 59.

s1 s2 s3 s4 s1 s2 s3 s4

1 18 10 23 11 47 43 16 31 18
2 26 10 13 11 48 38 23 37 18
3 48 17 30 11 49 46 25 39 18
4 27 20 9 11 50 47 4 26 19
5 46 22 9 11 51 33 7 27 19
6 23 29 24 11 52 18 11 17 19
7 25 29 13 11 53 43 11 37 19
8 34 29 9 11 54 5 14 13 19
9 50 7 38 12 55 53 20 27 19

10 15 8 19 12 56 24 25 25 19
11 44 22 16 12 57 30 25 27 19
12 6 23 29 12 58 34 29 41 19
13 16 5 22 13 59 18 5 36 20
14 11 10 25 13 60 15 11 18 20
15 18 11 40 13 61 52 11 34 20
16 19 16 30 13 62 5 22 10 20
17 45 23 24 13 63 9 22 10 20
18 17 7 9 14 64 16 23 38 20
19 52 11 20 14 65 17 23 26 20
20 52 22 30 14 66 40 23 37 20
21 25 23 26 14 67 46 23 5 20
22 27 7 19 15 68 6 28 27 20
23 25 11 13 15 69 25 28 33 20
24 6 26 31 15 70 5 32 26 20
25 19 28 25 15 71 13 7 37 21
26 38 28 37 15 72 26 8 41 21
27 53 28 18 15 73 37 10 43 21
28 50 29 32 15 74 38 10 11 21
29 17 32 41 15 75 30 13 39 21
30 39 8 12 16 76 38 16 43 21
31 53 13 33 16 77 9 17 32 21
32 12 5 13 17 78 34 25 17 21
33 16 5 11 17 79 38 26 41 21
34 25 7 32 17 80 8 28 31 21
35 54 10 36 17 81 19 29 12 21
36 45 11 29 17 82 37 32 27 21
37 30 20 18 17 83 27 8 5 22
38 39 20 43 17 84 8 10 29 22
39 19 22 22 17 85 41 10 25 22
40 50 23 25 17 86 50 13 4 22
41 11 26 19 17 87 55 13 37 22
42 19 26 11 17 88 50 17 36 22
43 13 29 40 17 89 39 26 29 22
44 46 32 29 17 90 55 26 23 22
45 20 4 31 18 91 13 28 16 22
46 5 10 33 18 92 51 32 10 22
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Table 5. ME-CF generators with L = 64, J = 4, k = 238, lg ρ =
220, and N1 = 71.

q1 q2 q3 q4 s1 s2 s3 s4

1 31 1 19 22 30 23 17 18
2 31 1 19 22 13 23 26 5
3 31 1 19 22 17 38 23 24
4 31 1 19 22 26 47 17 19
5 31 11 19 22 26 34 20 17
6 31 11 19 22 29 38 28 18

Table 6. ME-CF generators with L = 64, J = 5, k = 258, lg ρ =
258, and N1 = 103.

s1 s2 s3 s4 s5 s1 s2 s3 s4 s5

1 10 5 29 23 8 13 26 5 31 14 13
2 12 5 11 16 15 14 36 5 32 16 8
3 17 5 16 6 7 15 36 5 32 21 8
4 17 5 19 16 14 16 39 5 19 6 8
5 18 5 37 7 3 17 43 5 14 20 15
6 19 5 31 15 13 18 44 5 14 15 15
7 20 5 11 13 6 19 44 5 29 6 13
8 22 5 17 10 11 20 44 5 34 25 9
9 23 5 37 13 7 21 45 5 16 21 8

10 24 5 7 16 8 22 51 5 28 3 12
11 26 5 22 4 9 23 53 5 26 16 8
12 26 5 26 13 12 24 54 5 28 13 3

Table 7. ME-CF generators with L = 64, J = 5, k = 274, lg ρ =
271, and N1 = 119.

s1 s2 s3 s4 s5 s1 s2 s3 s4 s5

1 9 34 5 26 18 11 22 40 5 4 18
2 9 32 5 31 6 12 22 19 5 14 19
3 9 25 5 37 22 13 22 41 5 16 6
4 10 24 5 7 12 14 22 16 5 32 4
5 12 17 5 14 8 15 26 9 5 11 14
6 12 40 5 16 22 16 26 19 5 29 3
7 12 26 5 34 23 17 44 20 5 8 6
8 17 27 5 13 9 18 44 31 5 22 14
9 17 8 5 37 19 19 53 8 5 23 17

10 20 41 5 14 6 20 53 12 5 31 18

Table 3 gives 8 full-period ME-CF generators with L = 64, J = 4, (k1, k2, k3, k4)
= (63, 58, 55, 47), and (q1, q2, q3, q4) = (31, 19, 24, 21). Their period length is ap-
proximately 2223 and their characteristic polynomial P (z) (they all have the same)
has 49 coefficients (out of 223) equal to 1. Table 4 gives a partial list of ME-CF
generators with (k1, k2, k3, k4) = (63, 58, 57, 55) and (q1, q2, q3, q4) = (1, 19, 7, 24), so
k = 233 and lg ρ = 230, whereas Table 5 gives ME-CF generators with (k1, k2, k3, k4)
= (63, 60, 58, 57), which gives k = 238 and lg ρ = 220. In all cases, the number of
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ones in the characteristic polynomial of the combined generator is significantly less
than k/2, but still reasonably high.

Table 6 lists 24 full-period ME-CF generators with

L = 64, J = 5, (k1, k2, k3, k4, k5) = (63, 55, 52, 47, 41),

(q1, q2, q3, q4, q5) = (1, 24, 3, 5, 3), k = 258, ρ ≈ 2258, N1 = 103.

ME-CF generators with

L = 64, J = 5, (k1, k2, k3, k4, k5) = (63, 57, 55, 52, 47),

(q1, q2, q3, q4, q5) = (1, 7, 24, 3, 5), k = 274, ρ ≈ 2271, N1 = 119,

are given in Table 7. As J increases, N1 tends to approach k/2. With J = 6 or 7,
one can probably obtain N1 ≈ k/2. However, as more components are added while
making sure that lg ρ is close to k, one eventually comes up using polynomials Pj

of relatively small degree kj . Increasing J further then becomes less profitable.
One could also use polynomials Pj of larger degrees; e.g., use values of kj near

128, having in mind (hypothetical) computers with 128-bit words. Still larger values
of J would then be required in order to obtain N1 near k/2.

4. Implementations

The procedure lfsr113 in Figure 1 gives an implementation, in the language
C, of the first ME-CF generator in Table 1, with ρ ≈ 2113. It uses the algorithm
QuickTaus in Section 2.2 of [4], for each component of the combination. Before
calling lfsr113 for the first time, the variables z1, z2, z3, and z4 must be initialized
to any (random) integers larger than 1, 7, 15, and 127, respectively. In other words,
the kj most significant bits of zj must be nonzero, for each j. (Note: this restriction
also applies to the computer code given in [4], but was mistakenly not mentioned
in that paper.) Ideally, the vector of initial seeds (z1, . . . , zj) would be drawn from
a uniform distribution over the set of admissible values.

Figure 2 implements the first ME-CF generator in Table 6, whose period length
is ρ ≈ 2258. The type “unsigned long long” refers to a 64-bit unsigned integer,
available on 64-bit computers.

On a SUN UltraSparc 1, to generate 10 million (107) random numbers and add
them up to print the sum, it took approximately 2.5 seconds with lfsr113, 3.1
seconds with lfsr258, and 0.2 seconds with the procedure dummy in Figure 1. For
these speed comparisons, we used the cc compiler with the -fast option. We added
the numbers and printed the sum to make sure that the optimizing compiler was
not outsmarting us by skipping instructions after observing that the result was not
used.
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unsigned long z1, z2, z3, z4;

double lfsr113 ()
{ /* Generates numbers between 0 and 1. */
unsigned long b;
b = (((z1 << 6) ^ z1) >> 13);
z1 = (((z1 & 4294967294) << 18) ^ b);
b = (((z2 << 2) ^ z2) >> 27);
z2 = (((z2 & 4294967288) << 2) ^ b);
b = (((z3 << 13) ^ z3) >> 21);
z3 = (((z3 & 4294967280) << 7) ^ b);
b = (((z4 << 3) ^ z4) >> 12);
z4 = (((z4 & 4294967168) << 13) ^ b);
return ((z1 ^ z2 ^ z3 ^ z4) * 2.3283064365387e-10);
}

double dummy ()
{
return 0.5
}

Figure 1. A 32-bit combined LFSR generator with 4 components.

unsigned long long z1, z2, z3, z4, z5;

double lfsr258 ()
{ /* Generates numbers between 0 and 1. */
unsigned long long b;
b = (((z1 << 1) ^ z1) >> 53);
z1 = (((z1 & 18446744073709551614) << 10) ^ b);
b = (((z2 << 24) ^ z2) >> 50);
z2 = (((z2 & 18446744073709551104) << 5) ^ b);
b = (((z3 << 3) ^ z3) >> 23);
z3 = (((z3 & 18446744073709547520) << 29) ^ b);
b = (((z4 << 5) ^ z4) >> 24);
z4 = (((z4 & 18446744073709420544) << 23) ^ b);
b = (((z5 << 3) ^ z5) >> 33);
z5 = (((z5 & 18446744073701163008) << 8) ^ b);
return ((z1 ^ z2 ^ z3 ^ z4 ^ z5) * 5.4210108624275221e-20);
}

Figure 2. A 64-bit combined LFSR generator with 5 components.
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Département d’Informatique et de Recherche Opérationnelle, Université de
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