
proceedings of the
american mathematical society
Volume 123, Number 4, April 1995

CONTROLLABILITY OF A CLASS OF LINEAR SYSTEMS
IN BANACH SPACE
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(Communicated by Palle E. T. Jorgensen)

Abstract. This paper studies the notions of controllability for the linear sys-

tems associated with the generator of an exponentially bounded C-semigroup

in a Banach space, controls also belonging to Banach spaces. Necessary and

sufficient conditions are obtained in that framework, and the duality property

is studied, which generalize the corresponding results of the linear systems as-

sociated with the generator of a strongly continuous semigroup.

1. Introduction

We will consider the linear control system

(LCS) x'(t) = Ax(t) + Bu(t),       x(0) = Xq

where A is the generator of an exponentially bounded C-semigroup in a Banach

space X and B is a bounded operator from a control Banach space Y to X.
It is well known that (LCS) has received much attention, under the hypoth-

esis that A generates a strongly continuous semigroup (see, e.g., [1, 5, 7, 10]).

On the other hand, a generalization of strongly continuous semigroups, i.e.,

exponentially bounded C-semigroups, was recently introduced by Davies and
Pang [3] and extended by Tanaka and Miyadera [9]; see also [2, 4, 6, 8]. In
fact, there are many differential operators that generate C-semigroups but not
strongly continuous semigroups.

This paper is organized as follows. Section 2 contains preliminary material
on C-semigroups and inhomogeneous differential equations. Our main results
are in §§3 and 4. Finally, an example is given in §5 where strongly continuous

semigroups cannot be applied but exponentially bounded C-semigroups can.

2. Preliminaries

Let C be an injective operator in B(X). A strongly continuous family S(t)

(t > 0) in B(X) is called an exponentially bounded C-semigroup (hereafter

abbreviated as C-semigroup) on X, if S(t + s)C = S(t)S(s) for t,s > 0,
5(0) = C, and there exist constants M, a such that ||5(i)|| < Meat for t > 0.
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It is known that Lr := /0°° e~r'S(t) dt (r > a) is injective in B(X), and

the closed linear operator A defined by Ax = (r - L~xC)x for x e D(A) :=

{x e X ; Cx e R(Lr)} is independent of r. We call it the generator of S(t).

Moreover, define

Pc(A) = {r; R(C) c R(r - A) and r - A is injective}.

Lemma 2.1 [4, 9]. Let A generate a C-semigroup S(t) satisfying \\S(t)\\ <
Meat. Then

(a) (a, oo) c Pc(A) ■ For every r> a and n e N, R(C) c R((r - A)n) and

i       r00
(1) {r-A)-»C = ——        t»-xe-"S(t)dt,

which implies \\(r - a)n(r - ^)""C|| < M.
(b) A = C~XAC, where D(C~XAC) = {x e X ; Cx e D(A) and ACx e

R(C)}.
(c) For every x e D(A) and t > 0, S(t)Ax = AS(t)x and S(t)x = Cx +

J0'S(s)Axds.

The following proposition is a modification of Proposition 3.4 in [4], which
will be useful to conclude that A is the generator. The proof is easy and is

omitted.

Proposition 2.2. A generates a C-semigroup S(t) satisfying \\S(t)\\ < Meat iff
(a, oo) c pc(A), A = C~XAC, and (1) holds for r > a and n = 1. Moreover,

in the "if" part, if we replace "A = C~XAC" with "Ac C-XAC" then the
generator of the C-semigroup S(t) is C~XAC.

Remark. A sufficient condition for "A = C~XAC" is " p(A) / 0 and A c
C~xACn.

Now, let us turn to the inhomogeneous equation

(2) x'(t) = Ax(t) + f(t),        x(0) = x0

where A generates a C-semigroup S(t), /(•) 6 C([0, b], X).  If x(t) is a
solution, i.e., *(•) e C'([0, b], X) and (2) is satisfied, then by Lemma 2.1(c)

^-S(t - s)x(s) = S(t - s)f(s)   for 0 < s < t < b.

Integrating this we obtain that v(t) e R(C) andx(i) = C~xv(t) for 0 < t < b,

where

/'Jo
(3) v(t) = S(t)x0 +     S(t- s)f(s) ds   for 0 < t < b.

Jo

Theorem 2.3. Let v(t) be defined by (3).   Then the following statements are

equivalent.

(a) v(t) e R(C) for 0<t<b and C~xv(t) is a solution of (2).

(b) v(t)eR(C) for 0<t<b and C~xv(-) e C'([0, b], X).
(c) v(t) e CD(A) for 0<t<b and AC~xv(-) e C([0, b],X).

Proof. LeX \\S(t)\\ < Meat  (t > 0) and a > a . Define

Y = {xeX; C~xS(-)x e C([0, oo), X), lim «?-a'||C-'S(r);t|| = 0},
l—too
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||jc||y = supe-^HC-^WjcH   for x e Y.
l>0

Then (see [6]) (Y, \\ • \\Y) is a Banach space and T(t)x := C~xS(t)x (x e Y)
defines a strongly continuous semigroup on Y, with generator Ay (the part of
A in Y). Moreover, T(t)Cx = S(t)x for all x e X and CD(A) c D(AY).

(a) =>■ (b) This is trivial.
(b) => (c) Let u(t) = $¡C-Xv(t) for 0 < t < b . Then by (b)

(v(t + h)-v(t))-Cu(t)

<M
1

(C-xv(t + h)-C~xv(t))-u(t) 0   as/z->0,

i.e., v(-) e C'([0, b],Y). It also follows from Theorem 2 in [12] that v(t) is
a solution of the equation

(4)

Consequently

y'(t) = AYy(t) + Cf(t),       y(0) = Cx0.

C-xv(t) = xQ + C 1 / AYv(s)ds+ f f(s)ds.
Jo Jo

Hence by (b) C x ¡QAv(s)ds (t > 0) is differentiable. From the closedness

of C~x we obtain Av(t) = AYv(t) e D(C~X) = R(C) and C~xAv(t) = u(t) -

f(t) e C([0, b],X). Therefore (c) follows from Lemma 2.1(b).
(c) => (a) It is easy to see that v(t) is a mild solution of (4). By (c) and

Lemma 2.1(b), v(t) e CD(A) c D(AY) and C~xS(s)AYv(t) = S(s)AC~xv(t)
for s > 0 and 0 < t < b . Thus

\\AYv(t + h)- AYv(t)\\Y < M\\AC~xv(t + h) - AC~lv(t)\\ -» 0   as h -» 0.

It follows from Theorem 2 in [12] that v(t) is a solution of (4). Consequently

v(t) = Cx0+ / AYv(s)ds + C / f(s)ds
Jo Jo

= c(x0+ [ AC~xv(s)ds+ Í f(s)ds) ,

and therefore (a) follows.

From Theorem 2.3 one can deduce the following corollary (cf. [1, 12]).

Corollary 2.4. Let x0 e CD(A), f(t) e R(C) for 0 < t < b, and C~xf(-) e
L'([0, b], X). Let one of the following conditions be satisfied:

(a) C~xf(t) e D(A) for 0<t<b and AC~xf(-) e L'([0, b],X).
(b) There exists g in L'([0, b], X) suchthat C~xf(t) = C~xf(0)+j0'g(s)ds

for 0<t<b.
(c) X is reflexive and, for every t e (0, b), there exist Mt, /, > 0 such that

fJo
C~xf(s + h)- C_1/(5)|| ds < Mth  for0<h< /,.

Then v(t) e R(C) for 0<t<b and C~xv(t) is a solution of (2).
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3. Controllability and the duality property

This section concerns (LCS) with controls in LP([0, b], Y) (1 < p < oo).

Since a solution x(t) of (LCS) satisfies x(t) e D(A) for 0 < t < b, (LCS) in

the general case cannot be steered to all of X. According to §2, we will choose
to work with the following function

(5) v(t) := S(t)xo + [ S(t- s)Bu(s) ds   forO<t<b
Jo

where S(t) is a C-semigroup generated by A .

We first introduce some notions of controllability of (LCS).

Definition 3.1. We say that (LCS) is
(a) exactly controllable on [0, b] if for any xo, xx e X, there exists a control

u e LP([0,b],Y) such that v(b) = Cxx.
(b) approximately controllable [0, b] if, for any xo, xx e X and any e > 0,

there exists a control u e LP([0, b], Y) such that \\v(b) - Cxx\\ < e.
(c) exactly null controllable on [0, b] if, for any xo e X, there exists a

control u e Lp([0, b], Y) such that v(b) = 0.
(d) approximately null controllable on [0, b] if, for any xo e X and any

e > 0, there exists a control u e LP([0, b], Y) such that ||v(¿>)|| < e.

Since all subspaces of a finite-dimensional space are closed, the concepts

introduced in Definition 3.1 are equivalent for finite-dimensional systems, but

not in the general case. To derive necessary and sufficient conditions for these

concepts, we need the following lemma (see [1]).

Lemma 3.2. Let T¡ e B(X¡,X0)   (i = 1,2), where X¡   (i = 0,1,2) are
Banach spaces. Then:

(a) // Xi   (i = 0,1,2) are reflexive then R(TX) c R(T2) iff there exists
M>0 such that \\T*x*\\X; < M\\T¡x*\\x- for all x* e X0*.

(b) R(7\) c RjTÄj iff ker(T*) c ker(r,*).

Theorem 3.3. (a) Let X, Y be reflexive and q = p/(p - 1).   Then (LCS) is
exactly controllable on [0, b] iff there exists M > 0 such that

fb
(6) M ¡   \\B*S(t)*x*\\Y.dt > \\S(b)*x*\\qx. + \\C*x*\\%.,    Vx* e X*.

Jo

(b) (LCS) is approximately controllable on [0, b] iff B*S(t)*x* = 0 for
0<t<b implies that C*x* = S(b)*x* = 0.

(c) Let X ,Y be reflexive and q = pj(p - 1). Then (LCS) is exactly null
controllable on [0, b] iff there exists M > 0 such that

(1) M Í \\B*S(t)*x*\\Y,dt > \\S(b)*x*\\9x.,    Vx* e XA
Jo

(d) (LCS) is approximately null controllable on [0, b] iff B*S(t)*x* = 0 for
0<t<b implies that S(b)*x* = 0.

Proof. Define

(8) Qtu= f S(t-s)Bu(s)ds   for u e Lp([0, t], Y).
Jo
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Then clearly Q, € B(LP([0, t], Y),X) and so Q*t e B(X*, L«([0, t], Y*)).
But

(Q,u,x*)= [ (u(s), B*S(t-s)*x*)ds,    Vx* e X*, u e Lp([0, t], Y).
Jo

Therefore, Q¡ = B*S(t - ■)*.
Now, from Definition 3.1(a) we know that (LCS) is exactly controllable

on [0,b] iff, for any x0, xi e X, there exists u e LP([0,b], Y) such

that Cxi = S(b)xo + QbU. Since R(Qb) is a subspace of X, this is equiv-
alent to R(C) U R(S(b)) c R(Qb). Hence (a) follows from Lemma 3.2(a).
Similarly the approximate controllability of (LCS) on [0, b] is equivalent to

R(C)uR(S(b)) c R(Qb) and so (b) follows from Lemma 3.2(b). Finally, from
the proof of (a) and (b) one can deduce (c) and (d) respectively.

Remark. If R(C) = X or R(S(b)) = X, then (LCS) is approximately control-
lable on [0, b] iff B*S(t)*x* = 0 for 0 < t < b implies x* = 0.

If R(S(b)) c R(C), then (6) is equivalent to

fb
Ml   \\B*S(t)*x*\\Y.dt>\\C*x*\\x,,    vx'er.

Jo

Conversely, R(C) c R(S(b)) implies the equivalence of exact controllability

and exact null controllability on [0, b].

The following proposition gives a rank condition for approximate controlla-

bility.

Proposition 3.4. Let spâH{A"BY00; n = 0, 1,2,...} = X, where Y^ = {u e
Y;  By e iXfLx D(A")}.   Then (LCS) is approximately controllable on any

[0,0].
Proof. If B*S(t)*x* = 0 for 0 < t < b, then, for every yeYx, (S(t)By, x*) =
0 (0 <t <b). Differentiating this we see, using Lemma 2.1 (c), (S(t)AnBy, x*)

= 0 (0<t<b,n = 0,l,2,...) and therefore, by our assumptions, S(t)*x*
= 0 for 0 < t < b. The result now follows from Theorem 3.3(b).

We now turn to the duality property. To this end we need a result on the

adjoint semigroup of a C-semigroup, which is a generalization of the Phillips's

result (See [11].)

Theorem 3.5. Let A generate a C-semigroup S(t) on a reflexive Banach space

X. If p(A) ^ 0 and R(C) = X, then A* generates the C*-semigroup S(t)*
on X*.

Proof. We note first that the assumptions on C imply that C* is an injective

operator in B(X*) with dense range (see [11]) and that D(A) is dense in X

(see [3]). By Lemma 2.1(b) we have CA c AC. It follows from the properties
of adjoint operators (see [11]) that C*A* c (AC)* c (CA)* = A*C*, which
implies A* c C*'XA*C*. Also p(A) ^ 0 implies p(A*) ^ 0. Hence by the
remark following Proposition 2.2 we obtain A* = C*~XA*C*.

Let ||S(i)|| < Meat for t > 0. We next show (a,oo) c Pc(A*) and

(r-A*)~xC* = ((r-A)-xC)* for r>a. In fact, let Lr = (r- A)~xC(r > a),

then C* = ((r - A)Lr)* D L*r(r - A*). On the other hand, C* c (Lr(r - A))* =
(r - A*)L*. But C* eB(X*) and so C* = (r - A*)L*. Therefore, the desired
results follow.
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Finally, by (1) with n = 1,

/•oo

(x,(r-A*)-xC*x*) = (x,((r-A)~xC)*x*)= /    e~r'(x, S(t)*x*)dt
Jo

for all x e X, x* e X*, and r > a. From Proposition 2.2 it remains to show
the strong continuity of S(t)*. Let x* e D(A*), then by Lemma 2.1(c)

(x, S(t)*x* - C*x*) = I (x, S(s)*A*x*) ds,    V x 6 D(A).
Jo

Since S(s)*A*x* (s > 0) is weak*-continuous and since X is reflexive,

S(-)*A*x* e ¿¿„.([O, oo), X*) and so

S(t)*x* - C*x* = f S(s)*A*x* ds
Jo

which implies that S(-)*x* e C([0, oo), X*). The conclusion follows now from

DÇF) = X* and \\S(t)*\\ = \\S(t)\\ < Meat  (t>0).

It is fairly well known that control and observation are "dual to each other".

Dolecki and Russell [5] explore this duality relationship in an abstract Banach

space setting. Following [5] (LCS) is also the abstract linear system

Z2Ï*ZX£- D(E) c Z3

where Z- = X, Z2 = X x X, Z3 = L'([0, b], Y) and E = Qb, F(x,y) =
Cy-S(b)x. Let X, Y be reflexive, p(A) ¿ 0 and R(C) = X. Then it follows
from [5] and Theorem 3.5 that the adjoint (observation) system of (LCS) is

Z2* C Z* D D(E*) £ Z3*

where Z* = X*, Z2* = X* x X*, Z* = L"([0, b], Y*) (q = p/(p - 1)) and
E* = B*S(b - ■)*, F* = (-S(b)*, C*), that is,

(LOS) y'(t) = A*y(t),        y(0) = y0,        z(t) = B*y(t).

Corresponding to (5) we may consider C*z(t) = B*S(t)*yo for 0 < t < b.
(LOS) is called continuously initially (resp. finally) observable on [0, b] if

(6) (resp. (7)) holds; (LOS) is called initially (resp. finally) observable on [0, b]

if n0<t<bter(B*S(t)*) = {0} (resp. no</<ftker(5*5(í)*) C ker(S(b)*)).
Now the duality theorem is a direct consequence of Theorem 3.3.

Theorem 3.6. (LOS) is continuously initially (resp. initially, continuously fi-

nally, finally) observable on [0, b] iff (LCS) is exactly (resp. approximately,
exactly null, approximately null) controllable on [0, b].

4. Complete controllability

This section concerns (LCS) with controls in L^oc([0, oo), Y)   (1 < p < oo).

Definition 4.1. (LCS) is called completely controllable if, for any xo, xx e X

and e > 0, there exists t > 0 and a control u e LP([0, t], Y) such that

||u(0-Cxi||<fi.

Theorem 4.2. The following statements are equivalent.

(a) (LCS) is completely controllable.
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(b) \Jt>0R(S(t)) = [Jl>0R(S(t)B).
(c) B*S(t)*x* = 0 for t > 0 implies S(t)*x* = 0 for t > 0.
(d) B*((r - A)~xC)*x* = 0 for r > a implies ((r - A)~xC)*x* = 0 for

r> a.

If X is a Hilbert space then (a) ¿s also equivalent to

(e) J0'S(s)BB*S(s)*xds = 0 for t > 0 implies S(t)*x = 0 for t > 0.

Proof, (a) =i> (b) Since v(t) = S(t)x0 + Qtu (t > 0), where Qt is defined by

(8), the complete controllability of (LCS) is equivalent to R(C)ö\Jt>0R(S(t)) c

U>o*(&)- But Ut>o*(&) cU,>o*(S(Q*)cUf>o*(.S(fl) and, by the strong
continuity of S(t) on t = 0, R(C) c (jt>0R(S(t)). Therefore, (b) follows.

(b) =» (c) If B*S(t)*x* = 0 for t > 0, then (x,x*) = 0 for all x e

\Jt>0R(S(t)B). From (b) it follows that (S(t)x, x*) = 0 for all x e X and
t > 0. Thus S(t)*x* = 0 for t > 0. _

(c) =*■ (a) From the proof of (a) =>• (b) it suffices to show that (Jt>0R(S(t)) C

U>oÄ(öt) • If this is not the case then for every xo e Ui>ojR(5(0)\U>oi?(o') »
there exists x* e X* such that (x0, x*) -^ 0 and (Qtu, x*) = 0 for all u e
Lp([0, t],Y) and t > 0. Since Q* = B*S(t - ■)* for t > 0, it follows that
B*S(t)*x* = 0 for t > 0. By (c) we obtain S(t)*x* = 0 for t > 0. Hence,
(S(t)x, x*) = 0 for all x e X and t > 0. This is a contradiction.

(c)«*(d) If B*((r-A)~xC)*x* = 0 for r > a, then by (1) with n = 1

/•OO

/    e-rt(u,B*S(t)*x*)dt = (u,B*((r-A)-xC)*x*) = 0   \/ueY.
Jo

It follows from the uniqueness of Laplace transform that B*S(t)*x* = 0 and

so, by (c), S(t)*x* = 0 for / > 0. Again using (1) with n = 1 we deduce

((r - A)~xC)*x* = 0 for r > a. Similarly (d) implies (c).

(c) <* (e) If ^S(s)BB*S(s)*xds = 0 for t > 0, then

! \\B*S(s)*x\\ds= (Í S(s)BB*S(s)*xds,x\=0   for t > 0,

which implies B*S(t)*x = 0 for t > 0 and therefore, by (c), S(t)*x = 0 for
t > 0. It is clear that (e) implies (c).

Corollary 4.3. Let R(C) = X. Then the following statements are equivalent.

(a) (LCS) is completely controllable.

(b) \Jl>0R(S(t)B) = X.
(c) B*S(t)*x* = 0 for t > 0 implies x* = 0.
(d) B*((r - A)~xC)*x* = 0 for r>a implies x* = 0.

If X is a Hilbert space then (a) is also equivalent to

(e) jçS(s)BB*S(s)*xds = 0 for t > 0 implies x = 0.

For most linear systems the operators A and B will be given rather than

the C-semigroup S(t). So it is important to obtain conditions for complete

controllability involving the operators A nd B. In this direction we give three

conditions. The first is Theorem 4.2(d). The second is a rank condition (cf.

Proposition 3.4), namely, span{A"BY00 ; n = 0, 1,2, ...} = X implies the
complete controllability of (LCS). Before we give the third condition we need

the following result.
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Proposition 4.4. Let A generate a C-semigroup S(t) satisfying \\S(t)\\ <Meat

for t>0. Then for every r0> a, (r0 - A)~x generates the C-semigroup

T(t):=Y,Tj(ro-A)-nC   fort>0
n=0

satisfying \\T(t)\\ < Me'^~^ for t>0.

Proof. Lex Ax = (ro-^)-1 and ax = (r0-a)~x. We first show C~XAXC = Ax.
Indeed, Ax c C~XAXC follows easily from A c C~xAC. Conversely, let
x e D(C~XAXC) and put y = C~XAXC, then by Lemma 2.1(b) x = r0y -
C~xACy = (r0 - A)y, i.e., x e D(AX).

Next, let r > a ; then r0 - - > a. Hence, it follows from r - Ax =

f(fo - 7 - A)(ro - A)~l that r - Ax is injective and that R(r - Ax) =

D(\(r0 - A)(r0 - 7 - A)~x) D R(C). Therefore, (ax, 00) c pc(Ax).

Finally, by Lemma 2.1(a), we get ||r(í)|| < Meüit for t > 0 and

/•oo °°     /»oo ¿n °°

/    e~rtT(t)dt = Y       —te-rtdtAnxC = Yr-"-xAxC = (r-Ax)-xC
Jo to Jo    ni ¿

for r > ax. So the claim follows Proposition 2.2.

Theorem 4.5. Let \\S(t)\\ < Meat for t >0. Then (LCS) is completely con-
trollable iff the linear system

y'(t) = (r0 - A)-Xy(t) + Bu(t),        y(0) = y0

is completely controllable where ro> a.

Proof. From Theorem 4.2 it suffices to show the equivalence of Theorem 4.2(c)

and the following:
(c')     B*T(t)*x* = 0 for t > 0 implies T(t)*x* =0 for t > 0.
We only show that (c') implies Theorem 4.2(c) (the converse implication is

similar). Let B*S(t)*x* =0 for t > 0. Then it follows from (1) that

00   ¡n

(u,B*T(t)*x*)=YJ-x((ro-A)-nCBu,x*)
n=0

°°   tn    /»oo       n-l

-Eajf   T^rye^(S(s)Bu,x*)ds = 0
n=0-J0    (n-l)

for all u e Y. Namely, B*T(t)*x* = 0 for t > 0 and so, by (c'), T(t)*x* = 0
for t > 0.

We now assume r e (a, ro). Then

/•OO

/    e-rtS(t)dt = (r-A)-xC = (ro-r)-x(ro-A)-x((r0-r)-x - (r0-A)-x)-xC
Jo

= -(r0- r)~xC + (r0 - r)-2((r0 - r)'x - (r0 - A)~XTXC
roo

= (r0-r)-2 /    exp{-(r0-r)-xt}(T(t)-C)dt;
Jo
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here we note (/"o - r)~x > (ro - a)~x. Since T(t)*x* = 0 for t > 0 implies
C*x* = 0, it follows that for every x e X

/•CXI

/    e-rt(x,S(t)*x*)dt
Jo

/»OO

= (ro - r)'1 /    exp{-(r0 - r)~lt}(x, T(t)*x* - C*x*) dt = 0.
Jo

But f(r) := J0°°e~r'(x, S(t)*x*)dt is analytic in {r; Rer > a}. Therefore,

f(r) = 0  (Rer > a), and so the results desired follow.

Remark. As in §3, we call (LOS) completely observable if Hooker(Ä*5"(i)*) =

{0} . Since R(C) = X, the initial observability of (LOS) on [0, b] implies the
complete observability of (LOS). Moreover, (LOS) is completely observable iff

(LCS) is completely controllable.

5. An example

In this section we consider the following system of ordinary differential equa-
tions on L2(R) x L2(R) (cf. [3, 8]):

{ftXx(t, s) = ispxx (t,s) + zsqx2(t, s) + bx(s)ux(t, s),

ftx2(t, s) = ispx2(t, s) + b2(s)u2(t ,s)   for s e R and t > 0,

xx(0, s) = xx(s),    x2(0, s) = x2(s)      forseR,

where p, q are positive real numbers and z is a nonzero complex number.
Define

A={10     7sp)>        D(A) = {(f,g)eL2xL2;  ispf+zs«g,spgeL2}.

Then for t > 0,

etA=eis>,^   zsjty       D(etA) = {(f,g)eL2xL2; s«geL2}.

Therefore, A is not the generator of a strongly continuous semigroup, but it
is easy to see that {r; Rer ^ 0} c p(A) if q < 2p and that A generates a

once (q < p) or twice (q < 2p) integrated semigroup. In the general case A

generates a C-semigroup S(t) where C = (1 + |s|«)_1(o °¡) and S(t) = e'AC.

Also, a simple computation yields

C* = C,       S(t)* =e-isP'(l + \s\'l)-x
I     0\

Js"t   I)

Case 1. Let bx(s) = b2(s) = I, u = (ux,u2)e L2([0, b],L2x L2), and B =

(o /)• We show now that (9) is exactly controllable on [0,b]. In fact, by
Theorem 3.3(a), this is equivalent to

M I   í(l + \s\")-2(\f(s)\2 + \zs"tf(s) + g(s)\2)dsdt
(10) Jo Jr

>   f ( 1 + |5|')-2(2|/(5)|2 + \g(s)\2 + \-ZS"bf(S) + g(s)\2) ds
Jr
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for all f, g e L2 and for some M > 0. Calculating the terms in (10) yields

/ (1 + \s\")-2{\z\2s2"b2(bM/3 - l)\f(s)\2 + (bM - 2)(\f(s)\2 + \g(s)\2)
Jr

+ s"b(bM/2 - l)(zf(s)g(s) + zf(s)g(s))} ds > 0.

But from x2 +y2 > 2xy we can deduce

\s«b(bM/2- l)(zf(s)g(s) +!f(s)g(s))\ < \bM-2\(\b2s2"\zf(s)\2 + \g(s)\2).

Therefore, it is easy to check that if we choose M = 6/b then (10) holds. So

the claim follows.

Case2. Let bx(s) = ô (=0 or 1), b2(s) = 1, and ux=u2 = ueL2([0, b], L2).
Then B e B(L2, L2 x L2) and Bu = (Su, u). From this, B* e B(L2 x L2, L2)

and B*(f,g) = ôf + g. If

B*S(t)*(f, g) = eisP'(l + WT^Sf+z^tf+g) = 0   for0<t<b,

then it follows that f = g = 0. By Theorem 3.3(b) we know that (9) is approx-

imately controllable on [0, b]. However, (9) is not exactly null controllable on

[0, b]. If this is not the case then by Theorem 3.3(c) there exists M > 0 such
that

M [   [ (I + \s\«)-2\ôf(s) + zs«tf(s) + g(s)\2 ds dt
Jo Jr

> i(l + \s\")-2(\f(s)\2 + \zs'>bf(s) + g(s)\2)ds,    Vf,geL2.
Jr

Choosing g = -ôf we obtain

(1 + \s\q)-2(\b3Ms2q\z\2 - i)\f(s)\2ds > 0,    V / € L2.
/;

This is a contradiction if supp/ c {s e R ; \s\ < (b3M\z\2/3)~x^2q} and / ^ 0.

Case 3. Let bj(s) e L2 and uj(t, s) = uj(t) e Lfoc(0, oo) (J = 1,2). Then

B e B(CxC,L2xL2) and B(cx, c2) = (bx(s)cx, b2(s)c2). From this, B*(f, g)

— (Jr f(s)bi (s) ds, JR g(s)b2(s) ds). Therefore, it follows from Theorem 4.2(c)
that (9) is completely controllable iff

JRe-i°P<(l + \s\q)-xf(s)bx(s)ds = 0,

{ ¡Re-isP'(l + \s\«)-l(zs*tf(s) + g(s))b2(s)ds = 0

for t > 0 implies f = g = 0. By Theorem 4.2(d) this is also equivalent to

JR(r + is»)-x(l + \s\q)-xf(s)bx(s)ds = 0

{ ¡R(r + isp)-x(l + \s\")-xCzs"(r+isp)-xf(s) + g(s))b2(s)ds = 0

for Re r ^ 0 implies / = g = 0.
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