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Abstract. Suppose that T is a bounded linear operator on a complex Banach

space X . If T2(X) is closed, T(X) n N(T) is finite dimensional, and S is

a bounded linear operator on X such that S is invertible, commutes with T,

and has sufficiently small norm, then T - S is upper semi-Fredholm.

Throughout this paper X will denote a complex Banach space. We write
f?(X) for the set of all bounded linear operators on X. For T £ ^f(X), we

denote by N(T) the kernel and by T(X) the range of T. The operator T is
called upper semi-Fredholm if T(X) is closed and dim N(T) < oo. We write
a(T) for the spectrum of T. It is well known that the resolvent Ri(T) =

(kl - T)~l is a holomorphic function of A for points A in the resolvent set

C\o(T).
The aim of this paper is the following generalization of the "punctured neigh-

borhood theorem" for upper semi-Fredholm operators:

Theorem 1. Suppose that T £ S?(X), T2 has closed range, and T(X) n N(T)
is finite dimensional. Then:

(a) T - S is upper semi-Fredholm whenever S £ 2?(X) is invertible, TS =

ST, and \\S\\ is sufficiently small. Furthermore, we have

dim N(T-S) = dim [N(T) n f| T"(X) j .

(b) If 0 is a boundary point of o(T), then 0 is a pole of the resolvent of T.

For the proof of Theorem 1 we need some additional notation and a prelim-
inary lemma.

Let Te&(X). We write a(T) and ß(T) for dimyV(r) and codimT(A'),
respectively. The operator T is called lower semi-Fredholm if ß(T) is finite
(in this case T has closed range, by [4, Satz 55.4]). T is called semi-Fredholm

if T is upper or lower semi-Fredholm. T is Fredholm if both a(T) and ß(T)
are finite. The index of a semi-Fredholm operator T is defined by

_ ind(r) = a(T) - ß(T).
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For T £ 5f(X) we define the number k„(T) by

k„(T) = dim((7V(r) n Tn(X))/(N(T) n Tn+x(X)))       (n>0).

We say that T has uniform descent for n > d if k„(T) - 0 for n > d.

This notion is due to Grabiner (see [3, Definition 1.3 and Lemma 2.3]). If T
has uniform descent for n > d and if Tn(X) is closed in the operator range

topology of Td(X) for n > d, then we say that T has topological uniform

descent for n > d (see [3, Definition 2.5]). For a discussion of operator ranges

and their topologies, the reader is referred to [1] or [2].

Lemma. Suppose that T £ 2C(X), T2 has closed range, and dim T(X) n
N(T) < oo. Then:

(a) There exists an integer d > 0 such that T has uniform descent for

n>d.
(b) T has topological uniform descent for n>d and f)™=¡ Tn(X) is closed.
(c) T(nZiTn(X)) = ()ZiTn(X).
(d) If S £ S?(X) is invertible,  TS = ST, and \\S\\ is sufficiently small,

then T - S has closed range.

Proof, (a) Since

N(T) n Tn+x(X) C N(T) n T"(X) C N(T) n T(X)   for n > 0

and dim(yV(T) n T(X)) < oo, the result follows.
(b) Invoke [3, Lemma 2.4]. The hypotheses of this lemma are satisfied be-

cause of [3, Lemma 2.3].
(c) Use (b) and [3, Theorem 3.4(a)].
(d) Put V — T - S. Since T has topological uniform descent for n > d,

V has closed range, by [3, Theorem 4.7(a)].   D

Proof of Theorem 1. (a) Put X0 = fl^i Tn(X), and denote the restriction of

T to Xo by To. Clearly,

a(T0) = dim [ N(T) n f| Tn(X) J < dim(7V(r) n T(X)) < oo.

Part (c) of the above lemma shows that To(Á'o) = Xo ; thus, ß(To) = 0. It
follows that Tq is Fredholm with

ind(T0) = a(T0)-ß(To) = a(To).

[A, Satz 82.4] shows that there exists e > 0 such that

To - R is Fredholm

and
ind(r0 - R) = ind(To)   for R £ &(XQ) with ||A|| < e.

Furthermore, again by [4, Satz 82.4],

a(T0-R)<a(To), ß(T0 - R) < ß(T0) = 0

for R £ S?(Xo) with \R\\ < e. This gives ß(T0-R) = 0 and

(*) a(TQ - R) = ind(r0 - R) = ind(T0) = a(T0)

for each R £ &(X0) such that \\R\\ < e.
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Now suppose that S £ f£(X) is invertible, TS = ST, and ||5|| < e. Since

S commutes with T, we have S(X0) Ç X0. Put S0 = S\X0 ; then S0 £ 2C(Xo)
and ||5o|| < e.

Next we show that N(T - S) = N(T0 - S0). The inclusion N(T0 - S0) ç

N(T-S) is clear. Let x £ N(T-S) ; thus, Tx = Sx . Since TS = ST, we have
Tnx = Snx for each n £ N ; therefore, jc = S-T"* = r"(S-"x) € Tn(X) for

each « € N and, hence, x £ X0. This proves N(T - S) = N(T0 - So).
Therefore, by (*),

a(T-S) = a(T0-S0) = a(To).

To complete the proof of (a), we have to show that T-S has closed range for
sufficiently small ||5||. But this follows immediately from part (d) of the above

lemma.
(b) follows from [3, Corollary 4.9].   D

Remark. Theorem 1 can be proved under the weaker assumption that

T-\T2(X)) = T(X) + N(T) is closed. T(X) + N(T) being closed is equivalent
to T2(X) is closed in the operator range topology on T(X) (see the proof of
[3, Theorem 3.2]), so our results are still true except that X0 - CÇ=i Tn(X) is

only known to be closed in the operator range topology on T(X).
For T £2'(X) we define two essential spectra:

ae(T) = {A e C: T - kl is not Fredholm}

and

aw(T) = {A e C: T - kl is not a Fredholm operator with ind(T - kl) = 0}.

Theorem 2. Let T £ S? (X), and suppose that T2(X) is closed and dim N(T)n
T(X) < oo. Then:

(a) If 0 is a boundary point of ae(T), 0 is isolated in oe(T).

(b) If 0 is a boundary point of ow(T), 0 is isolated in ow(T).

Proof. Since T has topological uniform descent for n > d (Lemma, part (b)),

we can define

a*(T) = lim dimN(Tn+x)/N(T")
n—»oo

and

ß*(T) = lim dimT"(X)/Tn+x(X).
n—>oo

Theorem 4.7 in [3] then says that if A 6 C \ {0} is sufficiently small, then
a(r-A7) = a*(r-A7) = a*(r) and ß(T - kl) = ß*(T- kl) = ß*(T). Thus,
if any T - kl is semi-Fredholm for small k ^ 0, then all are semi-Fredholm

with the same index a*(T) - ß*(T). This gives the results.   D
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