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Abstract. Recently the author [Proc. Amer. Math. Soc. 103(1988), 1129-
1135] proved random versions of an interesting theorem of Ky Fan [Theorem

2, Math. Z. 112 (1969), 234-240] for continuous condensing random maps and

nonexpansive random maps defined on a closed convex bounded subset in a

separable Hilbert space. In this paper, we prove that it is still true for (more

general) continuous 1-set-contractive random maps, which include condensing,

nonexpansive, locally almost nonexpansive (LANE), semicontractive maps, etc.

Then we use these theorems to obtain random fixed points theorems for the

above-mentioned maps satisfying weakly inward conditions. In order to obtain

these results, we first need to prove a random fixed point theorem for 1-set-

contractive self-maps in a separable Banach space. This leads to the discovery

of some new random fixed point theorems in a separable uniform convex Banach

space.

1. Introduction and preliminaries

Random fixed point theory has received much attention for the last 16 years,

since the publication of the survey article by Bharucha-Reid [2] in 1976. Ran-

dom fixed point theorems are stochastic versions of (classical or deterministic)

fixed point theorems, and are required for the theory of random equations. In
this paper, we will consider a stochastic version of a very interesting theorem

of Fan [6, Theorem 2] which is stated as follows.

Let K be a nonempty compact convex set in a normed linear space X. For any

continuous map f from K into X, there exists a point u in K such that

\\u-f(u)\\=d(f(u),K),

where d(f(u), K) is the distance between f(u) and K.

Various nonstochastic aspects of this theorem has been studied by Fan [7],

Ha [8], Lin [12, 13, 15-17], and Reich [22]. Stochastic  aspects of the above
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theorem have been considered recently by Lin [14], Papageorgiou [19], Sehgal

and Singh [23], and Sehgal and Walters [24]. In [14], we considered random
versions of the above theorem for a continuous condensing random map de-

fined on a closed ball in a separable Banach space, and either a continuous

condensing random map or a nonexpansive random map defined on a closed

convex bounded sets in a separable Hilbert space. In this paper, we will unify

the above results by considering more general 1-set-contractive random maps,

which include condensing nonexpansive maps, and other interesting maps such

as locally almost nonexpansive (LANE), semicontractive, and the sum of a non-

expansive and a complete continuous map in a separable Hilbert space. We will

use these theorems to obtain some new random fixed point theorems for the

above-mentioned maps satisfying weakly inward conditions. These form §§3

and 4. In order to obtain these results, we need a random fixed point theo-
rem for continuous 1-set-contractive self-maps (a map sends its domain into

itself). As results of this, we prove several new random fixed point theorems

for self-maps in a separable uniform convex Banach space, which is §2.

Now, we introduce our notation and definitions.

Let (Q, Z) be a measurable space with Z a sigma algebra of subsets of Q.

Let X be a Banach space; a map F : Q —► 2X is called measurable if for each

open subset B of X, F~X(B) £ £, where 2X is the family of all subsets of X,

and F~X(B) = {ai £ Cl\F(co) n B is not empty}. This type of measurability is
sometimes called weakly measurable (cf. [9]). Since we only consider this type

of measurability in this paper, we just call it measurable as in [10]. We note that
when F(ùi) £ K(X) for all coêfl, where K(X) is the family of all nonempty
compact subsets of X, F is measurable if and only if F~X(C) el for every

closed subset C of X (see [9]). A measurable map <p: Q —> X is called a

measurable selector of a measurable map F: Q -» CD(Z), if <p(ai) £ F(ai) for

each oi £ Q, where CD(X) is the family of all nonempty closed subsets of X.
Let S be a nonempty subset of X ; let a map /:Qx5-»I is called a random

operator if for each fixed x e S the map /(•, x): Cl —> X is measurable. A

measurable map <p : Cl —> S is a random fixed point of a random operator /

(or F: Cl x S — CD(X)) if f(ai, <p(co)) = <p(oi) (or <p(co) £ F(co, <p(œ)))
for each ai £ Cl. A random operator /: Cl x S —> X is called continuous

(condensing, /c-set-contractive, LANE, nonexpansive, completely continuous,

semicontractive, etc.) if for each oi £ Cl, f(co, •) is continuous (condensing, k-

set-contractive, LANE, nonexpansive, completely continuous, semicontractive,

etc.). The definitions of condensing, k-set-contractive, LANE, nonexpansive,

semicontractive, etc., will be defined below.

Let B be a nonempty bounded subset of a metric space X. Let y(-) be

the Kuratowski measure of noncompactness, i.e., y(B) be the infinum of the

numbers r such that B can be covered by a finite number of subsets of X of

diameter less than or equal to r. Let S be a nonempty subset of X, and let /
be a continuous map from S into X. If for every nonempty bounded subset

B of S with y(B) > 0 we have y(f(B)) < y(B), then / is called condensing.
If there exists k, 0 < k < 1, such that for each nonempty bounded subset

B of S we have y(f(B)) < ky(B), then / is called ic-set-contractive. It is

clear that a rc-set-contractive map, with 0 < k < 1, is a condensing map; and

a condensing map is a 1-set-contractive map.

Let S be a nonempty subset of a normed space X and f:S—>X. Then /
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is:
(1) nonexpansive if \\f(x) - f(y)\\ < \\x - y\\ for each x, y £ S ;
(2) completely continuous if it maps weakly convergent sequences into

strongly convergent sequences;

(3) semicontractive (Browder [3]), if there exists a map V: S x S —> X such

that f(x) - V(x, x) for x in S, and

(a) For each fixed x in S, V(-, x) is nonexpansive from S to X ;

(b) For each fixed x in S, V(x, •) is completely continuous from S to

X, uniformly for « in a bounded subset of S (i.e., if Vj converges

weakly to v in S, supM6B || V(u, Vj) - V(u, v)\\ -► 0 as ;" -»• oo, where

B ç S is bounded);

(4) LANE (locally almost nonexpansive) (Nussbaum [18]) if / is continuous

and for each x £ S and e > 0 there exists a weak neighborhood Nx of x in

S (depending also on e) such that u, v £ Nx , \\f(u) - f(v)\\ < \\u - v\\ + e ;
(5) demiclosed if {x„} is a sequence in S such that x„ -> x £ S weakly

and f(xn) -+y m X, then f(x) = y ;
(6) demicompact if for every bounded sequence {xn} in S such that the

sequence {x„ - f(x„)} is a convergent sequence in X, then there exists a

strongly convergent subsequence of {x„} .

For x e AT, let

ps(x) = {y£S\ ||x - y\\ = d(x, S)},     where d(x, S) = inf ||x - y||.

The set-valued map ps is called the metric projection on S. If ps is a single-

valued map, it is called a proximity map. We will use p instead of ps later.

Remark 1.1. For a continuous map /: S -* X, where S is bounded, it is easy

to see that if / is demicompact, then / - / is demiclosed. It is also known

that every nonexpansive map is a 1-set-contractive map.

2. Random fixed point theorems for self-maps

Random fixed point theorems for continuous condensing or nonexpansive

self-maps were proved by Itoh [10] in 1979. But for more general 1-set-contrac-

tive maps, no random fixed point theorem is yet available. The hard part is to

find appropriate conditions for this type of map to have a fixed point. These con-

ditions must be automatically (although nontrivial) satisfied by such useful maps

as condensing, nonexpansive, LANE, semicontractive maps. Natural choices for

these conditions for deterministic fixed point theorems are: (I-f)(S) is closed,

and S is a closed convex bounded set or a closed bounded set with nonempty

interior (see [21] or [18]). For random fixed point theorems, these conditions
often lead to failure. Now, in this section, we are able to finish this goal.

Theorem 2.1. Let S be a nonempty weakly compact convex subset of a separable

Banach space X, and let f:ClxS^S be a continuous l-set-contractive random

operator such that I - f(co, •) is demiclosed, for each co £ Cl, where I is the

identity map on X.

Then f has a random fixed point.

Proof. Motivated by Itoh [10, Theorem 2.5], take an element v in S and a

sequence {kn} of real numbers such that 0 < k„ < 1 and k„ -► 0, as n-»oo.
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For each n , define a mapping /„:flx5-»S by

f„(oi,x) = knv + (\ -k„)f(co,x);

then fn is a (1 - kn)-set-contractive random operator. From [10, Theorem

2.1], fn has a random fixed point tp„, i.e., there exists a measurable map

(pn: Cl —► S such that fn(co, q>n(oi)) = <pn(oi) for all ai e Cl. For each n,

define Fn : Cl -* WK(5) by

F„(ío) = w-cl{p,-(<u)|/ > «},

where w-cl(C) denotes the weak closure of C and WK(5) denotes the family

of all nonempty weakly compact subsets of S. Define F : Cl —> WK(S) by

oo

F(co) = fi Fn(ai).
n=\

Since S is weakly compact and X is separable, the weak topology on S is

a metric topology (see [5, pp. 434]), S and F„(oi) are compact in the weak

topology from [9, Theorems 4.1 and 3.1], and F is w-measurable (i.e., F is

measurable with respect to the weak topology on S). From the Kuratowski and

Ryll-Nardzewski theorem [11], there is a w-measurable selector tp of F. For
each x* e X* (the dual space of X), x*(<p(')) is measurable as a numerically

valued function in Cl. Since X is separable, y> is measurable (see, e.g. [1, pp.

14-16]). We will show that cp is a random fixed point of /. Fixing any ai in

Cl, since (p(oi) £ F(oi), there exists a subsequence {(pm(oi)} of {ç>„(<y)} that

converges weakly to tp(ai). From

<Pm(oi) - f(ai, <pm(oi)) = kmv + (I -km)f(ai, (pm(ai)) - f(ai, <pm(co))

= km(v - f(oi, (pm(w)),

S is bounded, and km -+ 0 as m -> oo, {ç>m(û>) - f(oi, y>m(ai))} converges

to 0. By the demiclosedness of / - f(co, •), we have f(ai, y>(co)) = tp(oi), i.e.,

<p is a random fixed point of /.   D

Remark 2.1. As pointed out by the referee, the w-measurable of F, in the proof

of Theorem 2.1, can also be justified as follows.

Note that by definition,

F(co) = w - hmFn(oi) = {z £ S\ lim d(z, Fn(ai)) = 0} ,

with d(', •) being a metric whose topology coincides with the weak topology
on S (such a metric exists since X is separable and 5 is weakly compact).

However, we feel that our arguments work equally well. Although we quote
two theorems from [9], those two theorems are elementary properties of measur-

ability of a function. One states when the countable intersections of functions

are measurable, and the other when the different definitions of measurability of

a function are equivalent. Actually, Himmelberg's paper [9] has become an es-

sential reference for people working in this area because it gives all the necessary
measurable relations for random fixed point theory.

Theorem 2.2. Let S be a nonempty closed convex bounded subset of a separable

uniform convex Banach space X, and let f:ClxS^>S be a LANE random

operator.
Then f has a random fixed point.
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Proof. From [18, Lemma 1 and the proof of Lemma 3, pp. 762-763], / is a
1-set-contractive map and I - f(ai, •) is demiclosed for each ai £ Cl. Since S

is weakly compact, from Theorem 2.1,/ has a random fixed point.   D

Theorem 2.3. Let S be a nonempty closed convex bounded subset of a separable

uniform convex Banach space X, g: Clx S —► S be a LANE random operator,

h: Cl x S —» S be a completely econtinuous random map, and f = g + h.

Then f has a random fixed point.

Proof. From [21, Remark 3.7] / is also a LANE map. From Theorem 2.2, /
has a random fixed point.   D

Corollary 2.1. Let S be a nonempty closed convex bounded subset of a separa-

ble uniform convex Banach space X, and let /: Í2 x 5 -» 5 be a continuous
semicontractive random operator.

Then f has a random fixed point.

Proof. From [18, p. 761], / is also a LANE map. The corollary follows from
Theorem 2.2.   D

Corollary 2.2 (Itoh [10, Theorem 2.5]). Let S be a nonempty closed convex

bounded subset of a separable uniform convex Banach space X, g : Clx S -+ S

a nonexpansive random operator, h: Clx S —> S a completely continuous random

map, and f = g + h.
Then f has a random fixed point.

Proof. It is easy to see that / is a semicontractive map under the representation
V(u, v) = g(u) + h(v). The results follows from Corollary 2.1.   D

Remark 2.2. Theorem 2.2 is a stochastic version of Nussbaum [18, Theorem 1,

p. 764].

3. Random approximations

In this section, we will give random versions of all theorems in Lin and Yen's

[17], §2 by using theorems in §2.

Theorem 3.1. Let S be a nonempty closed convex bounded subset of a separable

Hilbert space X, and let f: Clx S -* X be a continuous I-set-contractive random
operator such that I - p o f(co, •) is demiclosed, for each ai e Cl, where I is

the identity map on X and p is the proximity map from X into S.

Then there exists a measurable map <p: Cl -* S such that

\\<p(oi) - f(ai, (p(ai)\\ = d(f(co, tp(ai)),S),     foralloi£Cl.

Proof. Since p is nonexpansive in a Hilbert space [4], it is easy to see that pof

is a continuous 1-set-contractive random map from Clx S into S. Since S is

weakly compact, from Theorem 2.1, there is a measurable map (p : Cl —> S such

that p o /(ta, <p(ai)) — tp(ai) for all ta £ Cl. Hence,

\\<p(ai) - f(co, <p(co))\\ = \\p o f(to, (p(oi)) - f(ai, (p(oi))\\ = d(f(co, <p(oi), S)

for all oi £ Cl.   D

Corollary 3.1 (Lin [14, Theorem 2]). Let S be a nonempty closed convex
bounded subset of a separable Hilbert space X, and let f:ClxS—>X be a

continuous condensing random operator.
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Then there exists a measurable map tp: Í2 —> S such that

\\(p(oi) - f(ai, <p(ai))\\ =d(f(ai, <p(co)), S)    forallai£Cl.

Proof. Let p be the proximity map from X into S. Since p is nonexpansive

[4], p o / is also a continuous condensing and, therefore, 1-set-contractive ran-

dom operator. For each oi £ Cl, from [20, p. 321], pof(oi, •) is demicompact;

therefore, I - p o f(co, •) is demiclosed (cf. Remark 1.1). From Theorem 3.1,

we have the corollary.   D

Corollary 3.2 (Lin [14, Theorem 3]). Let S be a nonempty closed convex

bounded subset of a separable Hilbert space X, and let f:ClxS^>X be a

nonexpansive random operator.

Then there exists a measurable map tp: Cl -> S such that

\\(p(üi)-f(to,(p(üi))\\=d(f(oi,<p(oi)),S)    for all oi £ Cl.

Proof. Let p be the proximity map from X into S. Since p is nonexpansive,

pof is also nonexpansive and, from [3], I-pof(oi, •) is demiclosed, for each

oi £Cl. From Theorem 3.1, we have the corollary.   D

Theorem 3.2. Let S be a nonempty closed convex bounded subset of a separable
Hilbert space X, and let f: Cl x S —> X be a LANE random operator.

Then there exists a measurable map q>: Cl—> S such that

\\<p(ai)-f(oi,<p(ai))\\ = d(f(oi,<p(co)),S)    foralloi£Cl.

Proof. Let p be the proximity map from X into S. From the nonexpansive-

ness of p, it is easy to see that p o / is also a LANE map, and therefore a

1-set-contractive map; from [18, pp. 762-763], I - p ° f(oi, •) is demiclosed.

From Theorem 3.1, we have the theorem.   D

Theorem 3.3. Let S be a nonempty closed convex bounded subset of a separable
Hilbert space X, g: Clx S —► X a LANE random operator, h: Cl x S —» X a
completely continuous random map, and f = g + h .

Then there exists a measurable map <p: Cl^> S such that

\\<p(co) - f(oi, <p(ai))\\ = d(f(co, <p(co)), S)    for alloi£Cl.

Proof. From [21, Remark 3.7], / is also a LANE map. From Theorem 3.2, we

have the theorem.   □

Corollary 3.3. Let S be a nonempty closed convex bounded subset of a separable

Hilbert space X, and let f: Clx S -* X be a continuous semicontractive random

operator.
Then there exists a measurable map <p: Cl —* S such that

\\<p(üi)-f(m,<p(ai))\\=d(f(co,<p(co)),S)    for all to £ Cl.

Proof. From [18, p. 761], / is also a LANE map. The results follows from

Theorem 3.2.   D

Corollary 3.4. Let S be a nonempty closed convex bounded subset of a separable

Hilbert space X, g: Clx S —> X a nonexpansive random operator, h: Clx S —► X

a completely random map, and f ' = g + h .
Then there exists a measurable map tp: Q —► S such that

\\<p(co) - f(ai, <p(ai))\\ = d(f(w, <p(to)), S)    for alloi£Cl.
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Proof. It is easy to see that / is a semicontractive map under the representation
V(u, v) = g(u) + h(v). The results follows from Corollary 3.3.   D

Remark 3.1. Corollary 3.2 can be viewed as a special case of Corollary 3.4 by

letting h be identically equal to zero. Actually, Lin [14] proved Corollary 3.1 for

the case requiring only that f(co, S) be bounded for each co £Cl instead of S
being bounded. But for most of the work on deterministic fixed point theorems

for LANE, nonexpansive, semicontractive maps, S is assumed bounded (see,

e.g., [21, 18]).

4. Random fixed point theorems for non-self-maps

In this section, we will prove some new random fixed point theorems for

non-self-maps, by using Theorem 3.1. These theorems are random versions of
theorems in Lin and Yen's [17, §3].

Theorem 4.1. Let S be a nonempty closed convex bounded subset of a separable

Hilbert space X, and let f.ClxS^X be a continuous I-set-contractive random
operator such that I - p o f(ai, •) is demiclosed, for each ai £ Cl, where I is

the identity map on X and p is the proximity map from X into S. Moreover,

f satisfies any one of the following conditions:
(i) For each oi £ Cl and each x £ S, there exists a number X (real or

complex, depending on whether the vector space X is real or complex) such that

\X\ < 1 and Xx + ( 1 - X)f(co, x) £ S.
(ii) For each co £ Cl and each x £ S with x ^ f(ai, x), there exists y,

depending on co and x, in Is(x) = {x + c(z - x)\ some z £ S, c > 0} such

that ||v- f(ai, x)|| < \\x - f(co, x)\\.
(iii) / is weakly inward (i.e., for each co £Cl, f(co, x) £ cl Is(x) for x £ S).

Then f has a random fixed point.

Proof. From Theorem 3.1, there exists a measurable map <p: Cl -> S such that

\\<p(co) - f(co, <p(co))\\ = d(f(oi, <p(co)), S)    for all co £ Cl.

We will prove that cp is the desired random fixed point if / satisfies any one

of the above conditions.

Let / satisfy condition (i). If <p is not a random fixed point of /, then

there exists co £ Cl such that (p(co) ̂  f(co, (p(co)). To this cp(co) £ S, there

exists a number X such that \X\ < 1 and Xcp(co) + (1 - X)f(co, cp(co)) = x £ S.
Therefore,

0 < \\tp(ai) - f(ai, cp(ai))\\ = d(f(co, tp(co)), S) < ||x - f(co, <p(co))\\

= \X\\\<p(oi) - f(co, <p(ai))\\ < \\<p(oi) - f(co, <p(to))\\,

which is a contradiction. Hence cp is a random fixed point of /.

Let / satisfy condition (ii). If cp is not a random fixed point of /, then

there exists co £ Cl such that <p(co) ̂ f(co, cp(co)). From the assumption (ii),

there exists y in Is(<p(co)) such that

\\y-f(oi,tp(co))\\<\\tp(œ)-f(œ,<p(œ))\\.

Since y £ Is(cp(co)), there exists z £ S, c> 0 such that y = cp(co)+c(z-(p(co)).

Since y is not in S and otherwise contradicts the choice of cp , we can assume
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that c > 1. Then z = y/c + (1 - l/c)<p(co) = (1 - /?)y + ß<p(co), where

ß = l-l/c, 0 < >5 < 1. Therefore,

||z - /(ta, p(û>))|| < (1 -ß)\\y- f(co, <p(co))\\ + ß\\cp(co) - f(oi, <p(co))\\

< (1 - ß)\\<p(ca) - f(oi, cp(oi))\\ + ß\\cp(to) - f(co, cp(ai))\\

= \\cp(oi)-f(co,<p(oi))\\

which contradicts the choice of cp . Hence, f(ai, cp(co)) = cp(co) for all co £Cl

and cp is the desired random fixed point of /.

Let / satisfy condition (iii). For each co £ Cl and each x £ S with x ^

f(co, x), since f(co, x) £ clls(x), there exists y in Is(x) such that ||y -

f(co, x)\\ < \\x - f(co, x)\\ and / satisfies condition (ii).   D

Corollary 4.1 (Lin [14, Theorem 5]). Let S  be a nonempty closed convex
bounded subset of a separable Hilbert space X, and let f: Cl x S —> X be a

continuous condensing random operator. Moreover, f satisfies any one of the

conditions (i)-(iii) in Theorem 4.1.

Then f has a random fixed point.

Proof. Let p be the proximity map from X into S. Since p is nonexpansive,

p o f is also a continuous condensing and therefore 1-set-contractive random

operator. For each co £ Cl, from [20, p. 321], p o f(co, •) is demicompact,

therefore I -po/(ta, •) is demiclosed (cf. Remark 1.1). From Theorem 4.1,
we have the corollary.   D

We note that the proof of Corollary 4.1 is almost identical to the proof of

Corollary 3.1, replacing Theorem 3.1 by Theorem 4.1. Similarly, we have the

following Corollaries 4.2-4.4 and Theorems 4.2-4.3. The proofs of them are
almost identical to Corollaries 3.2-3.4 and Theorems 3.2-3.3. Therefore, we
will state them without proof.

Corollary 4.2 (Lin [14, Theorem 6]). Let S be a nonempty closed convex

bounded subset of a separable Hilbert space X, and let f: Cl x S —» X be a
nonexpansive random operator. Moreover, f satisfies any one of the conditions
(i)-(iii) in Theorem 4.1.

Then f has a random fixed point.

Theorem 4.2. Let S be a nonempty closed convex bounded subset of a separable

Hilbert space X, and let f: Clx S —> X be a LANE random operator. Moreover,

f satisfies any one of the conditions (i)—(iii) in Theorem 4.1.
Then f has a random fixed point.

Theorem 4.3. Let S be a nonempty closed convex bounded subset of a separable

Hilbert space X, g: Clx S -> X a LANE random operator, h: Cl x S —> X a
completely continuous random map, and f = g + h. Moreover, f satisfies any
one of the conditions (i)—(iii) in Theorem 4.1.

Then f has a random fixed point.

Corollary 4.3. Let S be a nonempty closed convex bounded subset of a separable

Hilbert space X, and let f: Clx S —» X be a continuous semicontractive random

operator. Moreover, f satisfies any one of the conditions (i)—(iii) in Theorem

4.1.
Then f has a random fixed point.
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Corollary 4.4. Let S be a nonempty closed convex bounded subset of a separable

Hilbert space X, g: Clx S -* X a nonexpansive random operator, h: Clx S -» X

a completely continuous random operator, and f = g + h . Moreover, f satisfies
any one of the conditions (i)—(iii) in Theorem 4.1.

Then f has a random fixed point.

Remark 4.1. Xu [25] extended Corollary 4.1 to a separable Banach space. If S

has a nonempty interior, he also extended Corollary 4.2 to a uniformly convex

Banach space. The other theorems and corollaries in this section are all new.
Actually, this paper seems to be the first to prove some random fixed point

theorems for continuous 1-set-contractive maps with success. This means that
we are able to prove random fixed point theorems for those interesting maps—

LANE, semicontractive—without putting additional conditions on those maps.

Remark 4.2. All the theorems and corollaries in §4 remain true if / satisfies
any one of the following conditions:

(iv) For each co £ Cl and any u on the boundary of S with u = p(f(co, u)),

u is a fixed point of f(co, •) •
(v) For each co £ Cl and each x on the boundary of S, ||/(ta, x) - y\ <

||x-y|| for some y £S.

The proof of this is a modification of Theorem 4.1 and Theorem 5 of [17].
We will omit this proof, because these conditions do not seem to be as popular
as conditions (i)—(iii) in Theorem 4.1. With this remark, we finish the random

versions of all the theorems of Lin and Yen's [17, §3].
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