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A CHARACTERIZATION
OF QUASINORMABLE KÖTHE SEQUENCE SPACES

M. ANGELES MIÑARRO

(Communicated by Dale Alspach)

Abstract. Let E be a quasinormable Fréchet space. We prove that every

quotient map q : E -» X with X Banach lifts bounded sets. Moreover, we

show that this property characterizes the quasinormability of E in case that E

is a Köthe sequence space of order p , 1 < p < oo or p = 0.

The class of quasinormable locally convex spaces was introduced and studied
by Grothendieck in [9] and has recently received much attention, particularly

in the context of Fréchet spaces (see [1,2, 13]). We recall that a Fréchet space

E with a decreasing zero-neighborhood basis (U„)„€n is quasinormable if there

is a bounded set B in E such that

V« € N 3m > n,    Ve > 0 3k > 0,        Um c kB + eUn

(see [11, 10.7.2]). In this note we prove two results on the structure of quasi-

normable Fréchet spaces. In the first section we show that every quotient map

q from a quasinormable Fréchet space E onto a Banach space X lifts bounded
sets (i.e., given a bounded set C in X there is a bounded set B in E such that

C is contained in q(B)). We also prove that this property actually characterizes
the quasinormability in the class of Köthe sequence spaces. In §2 we show that

a quasinormable Fréchet space E without copies of lx can be written as a pro-

jective limit of a sequence of Banach spaces without copies of lx. In particular

no quotient of E contains a copy of lx.
Our notation is standard. We refer the reader to [12, 14].

1

Before stating our main result we recall the celebrated example of Köthe of a

Fréchet-Montel sequence space kx having /) as a quotient [12, 31.5]. Denote
by q the quotient map; then for any bounded set C in kx, we have that

q(C) is precompact and, consequently, cannot contain the unit ball of lx. In
particular, q does not lift bounded sets. With our main result we show that

lacking the quasinormability seems to be the main reason for such a pathology.
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1. Theorem. Let E be a quasinormable Fréchet space, and let L be a closed
subspace of E such that E/L is normable. Then the canonical quotient map

q: E -> E/L lifts bounded sets.

Proof. It is enough to show that there is a bounded set B in E such that
q(B) is a zero-neighborhood in E/L. Indeed, by quasinormability there is an

absolutely convex bounded set B in E such that

(1) V«eN3/n>«,    Ve>03A>0,        UmckB + eU„.

Let V denote the unit ball of E/L, and fix « e N such that q(U„) c V.
Then we choose m > « as in (1). Since q is open, there is p > 0 such that

pV c q(Um). Given e = (2p)_1 we apply q in (1) to get V c kq(B) + \V

for some k > 0. This inclusion implies V c 2kq(B). Hence q(B) is a zero-
neighborhood in I. To finish, the same technique of the Banach-Schauder
theorem [12, 15, 12.(2)] allows one to remove the closure and obtain that q(B)
is a zero-neighborhood. We can also apply the following relevant result recently
proved by Bonet and Dierolf [4]: let E be a Fréchet space, let L be a closed

subspace of E and q: E —> E/L the quotient map. If q lifts bounded sets with
closure (i.e., for every K bounded in E/L there is a bounded set A in E such

that K c q(A) ), then q lifts bounded sets.   D

We provide two consequences of Theorem 1. The first should be compared
with [17, 1.5 and 1.6]. The second extends to quasinormable Fréchet spaces a

well-known result from the theory of Banach spaces.

2. Corollary, (i) Let 0-*L^>E-^G->0bean exact sequence where E is

Fréchet and G is a Schwartz or a Banach space; then L is quasinormable if

and only if E is quasinormable.

(ii) Let 0 -» L -* E -^ A (/) -> Obe an exact sequence. If E is Fréchet
quasinormable, then y/ has a right inverse. In particular, if a quasinormable

Ffechet space has a quotient isomorphic to lx (I), then it also has a complemented

copyoflx(I).

Proof, (i) If L and G are quasinormable, then E is quasinormable by the

positive solution of the three-space problem for quasinormable Fréchet spaces
(see [15]). Conversely, assume that G is either Schwartz or Banach and E is

quasinormable. In the Schwartz case by compactness (see [12, 22.2.7]) and in
the Banach case, by our Theorem 1 it follows that q: E -* G is a quotient map

that lifts bounded sets. Then, the result of Merzon (see [6]) implies that Kerq,

i.e., L, is also quasinormable.
(ii) By Theorem 1 there is a bounded set (x,),€/ in E such that y/(x¡) = e¡

(i £ I) where e¡ denotes the i th unit vector basis. Since (x,)l€/ is bounded,

it is readily checked that the map

i:lx(I)^E,        (a,)/6/ -♦ 53 a'xi >
¡a

is a well-defined and continuous linear mapping. It is also clear that ip o i is

the identity of /i(/).   D

3. Remark. Compare with 2(ii) the following statement which follows from

results in [5] and [16]. // 0-»L-t£Í h(I)N -» 0 is an exact sequence with
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L (and hence E) a quojection (i.e., a countable projective limit of surjective
operators), then ys has a right inverse. We recall that a quojection is a very
particular case of a quasinormable Fréchet space.

To finish this section we shall prove that lifting bounded sets from Banach

quotients characterizes the quasinormability in the class of Köthe sequence
spaces. We begin with some definitions.

4. Definition [1]. Let / be an index set. A Köthe matrix on / is a sequence of

maps A = (a*(i))*eN , ak: I -> R (k £ N), satisfying: (i) 0 < ak(i) < ak+x(i),
k £ N, i £ I, and (ii) Vz £ I 3k £ N, ak(i) > 0. Given a Köthe matrix A
and given peR, l<p<oo,orp = 0,we define the Köthe sequence space of
order p as

kp(I, A) := i (Xi) £ K1; ||(x,)lk := ( £ N'**(0 1      <™,k£

1 <p < oo;

k0(I, A) := I (Xj) £ K1; lim\x¡\ak(i) = 0, ||(x,)||fe := sup\x¡\ak(i) \ .

Ap(7, ̂ ) is a Fréchet space when endowed with the topology defined by the

increasing sequence of seminorms (|| • H/OiteN (see [1]) for more details).
The next statement follows from the characterization given in [1]. A Köthe

sequence space kp(I, A) is quasinormable if and only if for every countable set

J c I the sectional subspace

kp(J, A) := {(x¡) £ kp(I ,A);Xi = 0 Vz £ /}

is quasinormable. This is the reason why we assume that / is always either N
or N x N, and we shall write only kp(A) instead of kp(I, A).

5. Theorem. Let kp(A) be a Köthe sequence space, with 1 < p < oo or p = 0.

Assume that every quotient map q: kp(A) —> X, with X Banach, lifts bounded
sets. Then kp(A) is quasinormable.

Proof. We shall assume that kp(A) is not quasinormable, and we shall construct
a quotient of kp(A), isomorphic to lp (isomorphic to Co in case p = 0) and

such that the quotient map does not lift bounded sets.

Let A be a Köthe matrix such that kp(A) is not quasinormable. It is
proved in [3] that kp(A) has a quotient kp(B) where the Köthe matrix B =

(bk(i,j))km satisfies:

(a) bx(i, j)=l, Vi,j £ N, bk(i,j) = bx(i, j), Vi > k.
(b) lim7_oo bk(k - 1, j) — oo, V/c > 2.

For technical reasons we modify the weights defining b¡.(i, j) := ibk(i, j).

It is clear that kp(B) is isomorphic to kp(B*), where B* := (bj¡.(i, j))ken . We
are done if we construct the quotient map that does not lift bounded sets for
the space kp(B*). We have got the following conditions:

(a') b\(i, j) = i, Vi, ; £ N; b*k(i,j) = b*(i, j) ,Vi>k.
(b') lim^oo b*(k - 1, ;) = oo  VÂ: > 2.

We proceed with the proof in three steps.

Step 1: We construct the quotient. As a consequence of (a') we have,

ck(j) := inf{b*k(i, ;') ; ¡eN} = inf{ibk(i, j) ; i £ N} = min{ibk(i, j) ; i < k}.
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It now follows from [3, 3.1] (see also [18]) that kp(C), with C :- (ck(j))keN ,
is a quotient of kp(B*).

Step 2: We check that kp(C) is normable. It follows from (b) that

lim bk(i,j) = œ,    Vz < k;        bk(k,j) = l,    V; 6 N.
;-»oo

As a consequence ck(j) takes the value k for almost every j . Therefore for

some Mk > 0 we get ck(j) < Mkcx(j) (k £ N). This implies that the first
seminorm ||-||i defines the topology of kp(C).

Step 3: We prove that the quotient map l\ : kp(B*) —> kp(C), U((Xij)) :—

C52°lx2~'Xij)j does not lift bounded sets. Denote by V the unit ball of the first
seminorm in kp(C). It is enough to check that V is not contained in U(L)

for any bounded set L in kp(B*). Observe that e„ £V where e„ denotes, as
usual, the «th unit vector basis. Take L as any bounded set in kp(B*). We

will show that there is j £ N such that for every x £ L, the jth compound of

Yl(x) is less than 5 . This in particular implies that e¡ £ Yl(L). We assume

that 1 < p < 00 ; the case p = 0 is similar.

Let L be bounded in kp(B*). Let us denote Mk := sup{||x||k ; x £ L} and
fix a positive integer z0 > (3MX)P . Given any x = (x¡j) £ L it follows by (a')

that

/co \ Up

\xu\i^p< (£|xof2>,0\;)J      <\\(xu)\\x<Mx,    Vz,;eN,

whence \xy\ < 3, Vz > z'o, Vx = (x¡f) £ L. Analogously, given i £ N and
jc = (Xjj) £ L we have

\Xij\b¡lP(i, ;) < ||(*,7)||,+i < MM ,    V/ £ N.

Thus by (b') we can fix j(i) £ N such that \x¡j\ < \ for every j > j(i) and

x £ L. To finish we take 70 = max{;'(z) ; 1 < 1 < i'o — 1} and evaluate the joth

compound of H(x) for any x £ L. By the above inequalities we get,

;=i

This finishes the proof.   D

oc

;=1

ï*o— 1 00

<£2-'|x0o| + £2-'|x/7o|<

1=1 i=('o

2

The following problem arises in several situations in Analysis:

Let E be a Fréchet space with a certain property (P). When can
(*)       E be written as a projective sequence of Banach spaces having

the property (P)?

It was proved by Grothendieck that a quasinormable reflexive Fréchet space
E can be written as a projective sequence of reflexive Banach spaces [9]. Here
we show a similar result if (P) is the property of having no copy of lx.
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6. Theorem. Let E be a quasinormable Fréchet space without copies of lx.

Then E can be written as a projective limit of Banach spaces having no copy of

lx. In particular, no quotient of E contains a copy of lx.

Proof. Let us denote by E„ the local nth Banach space and by /„ : E -> E„ ,
In,m' Em ^ E„, « < m , the canonical mappings. By quasinormability and by

taking a subsequence of (U„)nen if it is necessary we may assume that there is

an absolutely convex bounded set B in E satisfying

V«eNVe>03¿>0,        U„+i ckB + eUn.

In particular, for every « e N, we have

(1) VA>03e>0,        In(Un+x)ckIn(B) + eIn(Un).

Since E has no copy of lx, B is weakly conditionally compact (w.c.c.) (i.e.,

every sequence in B has a weak Cauchy subsequence; e.g., see [7, Lemma 3]);

therefore, I»(B) is w.c.c. for every « £ N. By (1) and [8, p. 237] it follows

that I„(Un+x) is w.c.c. Now it is readily checked that In>n+i is a Rosenthal

operator (i.e., it maps the unit ball of En+X into a w.c.c. set). It is a result

of Weis [19] that every Rosenthal operator factorizes through a Banach space

having no copy of lx ; whence, the first assertion in this theorem follows.

Now let F be a quotient of E with quotient map q , and let us check that F

has no copy of lx. Indeed, take Vn := q(U„) (n £ N) as a zero-neighborhood

basis of F and denote by Fn , « e N, the corresponding local Banach spaces
and by /„ : F —► F„, Jn,m '■ Fm —> Fn the canonical mappings. Then we

have the following commutative diagram where the <7„'s stand by canonical

extensions:

En     -*-»     F„

'n ,n+l Jn ,n+l

En+\ —nJ—* En+X

Since In,n+i is a Rosenthal operator, J„r„+X is a Rosenthal operator too. Hence

F can also be written as a projective limit of Banach spaces having no copy of

lx. This already implies that F has no copy of lx.   D

7. Remark. The result above does not hold for a general Fréchet space. Once

more, the classical Montel, non-Schwartz, Köthe sequence space kx [12] does

not contain any copy of lx, but it cannot be written as a projective sequence

of Banach spaces without copies of lx. This can be deduced from the fact that

every Rosenthal operator from lx into lx is compact. It could also be derived
from the second part of the proof of Theorem 6 where quasinormability has

not been used.
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