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OPERATORS WITH COMPLEX GAUSSIAN KERNELS:
BOUNDEDNESS PROPERTIES

E. R. NEGRIN

(Communicated by Palle E. T. Jorgensen)

Abstract. Boundedness properties are stated for some operators from LP(R)

into lfl (R), 1 < p, q < oo , with complex Gaussian kernels. Their contraction

properties are also analysed.

1. Introduction

In this paper we will study boundedness properties for the general complex

Gaussian operator in dimension one,

/+oo exp{-ßx2 - ey2 + 2ôxy + Çx + yy} • f(y) dy,
-oo

ß, e, ô, £, y eC, jceR, from the space of complex-valued functions //(R)

into Lq(R), 1 < p, q < oo, relative to the Lebesgue measure.

This subject was originally of interest in the context of Quantum Field Theory
(see [1]). The complex Gaussian operator (1.1) has an intrinsic interest due to

the basic role of the extended oscillator semigroup introduced by Howe [4] (see

also Folland [3, Chapter 5]).
In his important paper [5], Lieb extends the operator (1.1) to n dimensions

and develops an extensive study of (1.1) in the context of the spaces LP(R"),
1 < p < co . Moreover, he generalizes the results given by Epperson in §2 of [2]

for ( 1.1 ). Lieb stated that for the nondegenerate case, that is, (Re a)2 < (Re ß) •

(Ree), &~ß,e,s,i,y has exactly one maximizer which is a centered Gaussian

function esy , s £ C. For the degenerate case, that is, (Re¿)2 = (Re/?)-(Ree),

the question of the existence of a maximizer is a subtle one. This problem

requires a complicated algebraic study, and precise conditions are not given

there.
The purpose of our paper is to calculate the exact region of boundedness of

(1.1) for each 1 < p, q < oo, in both degenerate and nondegenerate cases.
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The proof of this result follows a technique initiated by Weissler in Theo-

rem 1 of [6]. Weissler sated the exact region of boundedness for the Hermite

semigroup.
We conclude this paper by giving sufficient conditions in both degenerate

and nondegenerate cases for the operator ^,£>¿,{;y, /?,e,r5,¿;,yeR,tobe

a contraction over LP(R), 1 < p < oo, and a contraction as an operator from

L2(R) into LP(R), 0 < p < oo . These results follow those given in Chapter 8

of[l].
Throughout this paper we will take square roots with positive real part.

2. Boundedness properties

For 1 < p < oo, let (Ipf)(x) = (2n)~ll2p <exn(-x212p)-f(x). For z £ C, let
(Qzf)(x) = ezx-f(x). For y* >0,let (Ty.f)(x) = f(y*x). Also, for a'eC,
let (Ma*f)(x) = exp(-a*x2/2) • f(x). The Gauss-Weierstrass semigroup on R

is given by

/+00

exp[-(x-y)2/4z]./(y)ú?y,        xeI,
-oo

where Rez>0 (and z ^ 0). Finally, we denote by ||^,e>¿j£>y||p>9 the norm

of &ß,e,s,c,y as a map from LP(R) into L"(R), 1 < p, q < oo .

It is easy to check that for any y* > 0 and Rer5 > 0,

(2.1)   9j,,e,s,(,y = (ny*lo)'l2(2nri2p^l2^QiIqxMß.Ty.e^l40^Ma.IpQy,

where

a* = 2e - - - —,        ß* = 2ß + -- 2y*S.
p    r q

We will denote by q' the exponent conjugate to q .

Theorem 2.1. The following hold:
(i) If 1 <p < q < oo, Re<5 > 0, and Ree > 0, then -^<e,ô,z,y is bounded

from Z/(R) to Lq(R) if and only if

(Ree)-(Reß)> (Rea)2.

(ii) Ifl<q<p<oo, Red > 0, and Ree > 0, then &~ß,e,s,i,y is bounded
from U(R) to L«(R) if and only if

(Ree)-(Reß)>(ReS)2.

(iii) // 1 < p, q < oo, Reô = 0, \ - ¿ < Ree < \ - ^, and Reß >

Ree-l- ^ - 5^7 > 0, then &ß,e,s,i,y is bounded from LP(R) to L«(R) if and

only if Re e > 0.
(iv)//l </>,«? < oo, RerJ = 0,  ¿-2^ <Re^ < Ree + ^-^7, and

k~ w - Re^ - I - W ' then ^ß,z,s,t,y is bounded from LP(R) to Lq(R) if

and only if Re e > 0 and Re /? > 0.

Proof. Suppose first that Rer5 = 0, ¿ - ¿ < Ree < ± - ¿ , Re £ > Ree + ¿ -

4t > 0, and 1 < p, q < oo. Now, if Re e > 0, Re ß > 0, and m is a real
±
m

inequality yields that e^'l46^ is bounded from Lm(R) into Lm'(R)  (m' is the

number such that Re 2e+^ = ^ , we have 1 < m < 2, and the Hausdorif-Young
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exponent conjugate to m). But from the hypothesis &ß-(i/2q),e+{i/2p),6,(,y is

bounded from Lm(R, e~xll2dx) into Lm'(R, e~xl/2dx). Since p > m and

q < m', the operator ^ß-(i/2q),e+(i/2P),s,i,y is bounded from LP(R, e~x l2dx)

into Lq(R, e~x l2dx), 1 < p, q < oo, and therefore -^ E s í y is bounded

from Lp(R) into L«(R).

For the case Re<5 = 0, ¿ - ¿{7 < Reß < Ree + ¿ - ^7, \-^r<Reß<

j — -Xr, and 1 < p, q < oo, the proof is similar.

Now assume Rer5 > 0, so that Re(y*/4ô) > 0 and therefore, for 1 <

P < q < oo, ^'/«Ja is bounded from LP(R) into Lq(R). Since Ree > 0,

Reß > 0, and (Ree) • (Reß) > (Re<5)2, y* can be chosen so that Rea* > 0

and Reß* > 0. It follows from (2.1) that ^-(i/29),e+(i/2p),á,í,y is bounded

from Lp(R,e'x2/2dx) into Lq(R, e~xl'2dx), 1 < p,q < oo, and hence

&ß,e,o,(,y is bounded from W(R) into Lq(R).
For the case 1 < ^ < /? < oo and from the conditions Re e > 0, Re ß > 0,

and (Ree) • (Reß) > (Rea)2, y* can be chosen so that Rea* > 0 and
Reß* > 0. Observing that Mß. is a bounded map from LP(R) into Lq(R)

for Reß* > 0 and since e{y'/4S^ is bounded over L"(R), equality (2.1)

implies that &ß-(\/iq),e+(i/ip),o,i,y is bounded from LP(R, e~x l2dx) into

Lq(R, e~xll2dx), 1 < q < p < oo. Therefore, &ß,e,s,(,y is bounded from

L»(R) into Lq(R).
In order to prove the converse, suppose \\^ß,e,s,z,y\\p,q < °° • We will prove

that Ree > 0, Reß > 0, and (Ree) • (Reß) > (Reô)2 and that (Ree) •
(Reß) > (Re<5)2 holds if q < p . To this end, we need to calculate the action

of &ß,e,s,i,y on an arbitrary Gaussian function gs(y) = esy , seC, y £ R.

Then -^ß e s ( y can De computed for Res < Ree to obtain

(2.2)
(^ß,e,a,i,ySs)(x)

= (JL\1/2. exp (¿2-ß* + ßsx2 + Sy + te-Zsx    _j¿_\
\e-sj V      e~s e-s 4(e-s)J'

with x £R.
We impose that gs £ //(R) so that Reí < 0. Now, we want (2.2) to be in

Lq(R). With this purpose, let us consider the transformation L(s), given by

= S2-ße + ßs

e - s

If ^ß,e,s,(,y e Lq(R), then ReL(s) < 0. Note that L maps e to oo.

Therefore, given the line Re 5 = 0, there exists a circle C passing through e

such that L applies C into the line Res = 0. We claim that Ree > 0. In
fact, assume that Re e < 0. Then Re 5 < Re e < 0. Let Sq be a point of the

circle C satisfying Reso < 0 and ReL(so) = 0. Assume that í -» so with

the restrictions Res < -e* (e* > 0) and ReL(s) < 0. Then gs remains

bounded in LP(R) as s -> so , while &ßte,s,t,y blows up in Lq(R). This is a

contradiction because &ß,e,ö,(,y is bounded, and we conclude that Ree > 0.

In order to verify that Re ß > 0, let

(2.3) Ll(s) = L(s) + ß = -^-s.
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Taking Res - -e* (e* > 0) and noting that Res < 0 implies ReL(s) < 0,

we have

(2.4) ReLx(s) = ReL(s) + Reß<Reß.

Now, letting s tend to infinity along the line Res = -e*, we see that 0 <

lim^So Re Lx (s) < Re ß , whence Re ß > 0. Thus Re e > 0 and Re ß > 0.
Next suppose that Ree > 0. In this case Lx carries the line Res = 0 into a

circle Ci passing through 0. By (2.4), to prove that (Ree) • (Reß) > (Rea)2,
it suffices to show that some point on that circle has real part

[Re^-rRee]-1.

Denote such a point by Si. From (2.4) we obtain

ReL^si) <Reß,

so that (Ree) • (Reß) > (Rer5)2 . The center of the circle Cx is \Lx(s2), where
s2 minimizes |e - s\ subject to the condition Res = 0. It is easy to check that

jLx(s2) + \jLx(s2)\ has the desired real part.
Finally, if q < p, we must show that the equality cannot hold in (Ree) •

(Reß) > (Rea)2. Indeed, if it did, then y* could be chosen so that Rea* =

Reß* = 0 in (2.1). Then (2.1) would imply that e^''4S^, with Re (y*/4ô) > 0,
is bounded from Z/(R) into Lq(R), which is false.   D

3. Contraction properties

The purpose of this section is to give sufficient conditions in order that the

operator &ßte<s,i,y (f°r degenerate and nondegenerate cases), ß, e, 6, t,, y £
R, be a contraction over LP(R), 1 < p < oo , and a contraction as an operator

from L2(R) into LP(R), 0 < p < oo .

The next results are motivated by Chapter 8 of [1].

Theorem 3.1. Let 1 < p < oo, and assume e > 0 and S2 < p'ße (here, p'

denotes the exponent conjugate to p). For all f £ LP(R), we have

(3.1)
/+oo

exp{[o2/(ßp-(p/p').(o2/e))-e]y2
-oo

+ [y + (S- (fr + (p/p') • (yo/e)))/(ßP - (p/p')

■(S2/e))]y}-\f(y)\pdy,

where

H - (Tilt)pl2pl • (n/(ßp - (p/p') • (¿2/e)))1/2

• exp{(py2/4ep') + ((&> + (p/p') • (yS/e))2)/(4 • (ßp - (p/p') • (ô2/e)))}.

Proof. By writing

/+oo {(exp[-ßx2 - ey2 + 2ôxy + Çx + yy])1^ ■ f(y)}
-oo

• {(exp[-ßx2 - ey2 + 2ôxy + c¡x + yy])l/p'}dy,
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x £ R, and applying Holder's inequality, it follows that

\(&ß,e,s,i,yf)(x)\< (£°°exp[-ßx2 - ey2 + 2ôxy + clx + yy] • \f(y)\p dy^
Up

go Up'

f

exp[-ßx2 - ey2 + 2Sxy + £x + yy] dy )

Since for e > 0,

>
exp[-ßx2 - ey2 + 2ôxy + c¡y + yx] dy

= (Tr/e)1/2 • exp[((r52/e) - ß)x2 + ß + (ôy/e))x + (y2/4e)],

we arrive at the estimate

m,,,S,i,yf)(x)\P

< (n/e)p/2pl ■ exp[py2/4ep']

L
+00

exp[-(ßp - (p/p') ■ (S2/e))x2 - ey2 + 2Sxy

+ (iP + (P/P') • (?S/e))x + yy] • \f(y)\» dy.

After integration with respect to x, the theorem follows,   o

Corollary 3.1. Under the same hypothesis and notation of Theorem 3.1, we set

A = S2/(ßp-(p/p')-(o2/e))-e

and

B = y + (ô.(^p + (p/p') - (yo/e)))/(ßp - (p/p') • (<?2/e)).

Then,
(a) If A - 0 (or equivalently, S2 = ß • e) and B = 0, one has

\\&ß,e,s,(,yf\\P < HXIP ■ ll/llP   for allf£Lp(R).

Note that if H < 1, we obtain

ll^,t,¿.í,y/llp<imip   forallf£Lp(R).

(b) If A <0 (or equivalently, S2 < ß • e), then

\\&ß,c,s,i,yf\\P < (H • exp(B2/4A))Vp . ||/||p   for all f £ LP(R).

Note that if H ■ exp(B2/4A) < 1, we obtain

\\^ß,e,s,i,yf\\P < \\f\\p   forallf£Lp(R).

Remark. For 1 <p<oo, e>0, S ^ 0, and ô2 = ße, the question of

contractivity remains open if B ^ 0 or H > 1 . This question also remains

open for 1 < p < 00 , e > 0, and S2 < ße, if H • exp(52/4^) > 1 .

Theorem 3.2. Let 0 < p < 00, and assume e > 0 and S2 < ße. Then, for all

f £ L2(R),

(3-2) ll^.«.í,í.,/ll,<tf*.||/||2,
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where

H* = (2n)xl4 • (4e)-1/4 • (n/p)ll2p • (ß - (ô2/e))~^2p

■ exp{(y2/4e) + (p • (Í + (ôy/e))2)/(4 • (ß - (S2/e)))}.

Proof. By Schwarz's inequality and the evaluation of a Gaussian integral, we

obtain for / £ L2(R),

\(^ß,e,s,i,yf)(x)\<(2ny/4-(4e)~1/4

■ exp[((«52/e) - ß)x2 + (£ + (ôy/e))x + (y2/4e)]. ||/||2.

Again, by evaluating a Gaussian integral (3.2) follows.   D

Corollary 3.2. Under the same conditions and notation of Theorem 3.2, if H* <
1, then

\\^ß,e,S,i,yf\\P<\\f\\2    for all f £ L2(R).
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