OPERATORS WITH COMPLEX GAUSSIAN KERNELS: BOUNDEDNESS PROPERTIES

E. R. NEGRIN

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. Boundedness properties are stated for some operators from $L^p(\mathbb{R})$ into $L^q(\mathbb{R})$, $1 \leq p$, $q \leq \infty$, with complex Gaussian kernels. Their contraction properties are also analysed.

1. INTRODUCTION

In this paper we will study boundedness properties for the general complex Gaussian operator in dimension one,

(1.1)
$$(\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}f)(x) = \int_{-\infty}^{+\infty} \exp\{-\beta x^2 - \varepsilon y^2 + 2\delta xy + \xi x + \gamma y\} \cdot f(y) dy,$$

 β , ε , δ , ξ , $\gamma \in \mathbb{C}$, $x \in \mathbb{R}$, from the space of complex-valued functions $L^{p}(\mathbb{R})$ into $L^{q}(\mathbb{R})$, $1 \leq p$, $q \leq \infty$, relative to the Lebesgue measure.

This subject was originally of interest in the context of Quantum Field Theory (see [1]). The complex Gaussian operator (1.1) has an intrinsic interest due to the basic role of the extended oscillator semigroup introduced by Howe [4] (see also Folland [3, Chapter 5]).

In his important paper [5], Lieb extends the operator (1.1) to n dimensions and develops an extensive study of (1.1) in the context of the spaces $L^p(\mathbb{R}^n)$, 1 . Moreover, he generalizes the results given by Epperson in §2 of [2] $for (1.1). Lieb stated that for the nondegenerate case, that is, <math>(\operatorname{Re} \delta)^2 < (\operatorname{Re} \beta) \cdot$ $(\operatorname{Re} \varepsilon)$, $\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}$ has exactly one maximizer which is a centered Gaussian function e^{sy^2} , $s \in \mathbb{C}$. For the degenerate case, that is, $(\operatorname{Re} \delta)^2 = (\operatorname{Re} \beta) \cdot (\operatorname{Re} \varepsilon)$, the question of the existence of a maximizer is a subtle one. This problem requires a complicated algebraic study, and precise conditions are not given there.

The purpose of our paper is to calculate the *exact* region of boundedness of (1.1) for each $1 \le p$, $q \le \infty$, in both degenerate and nondegenerate cases.

Received by the editors November 9, 1992 and, in revised form, July 15, 1993; part of the results of this paper have been presented to the First Congress of Mathematics, Paris, July 6-10, 1992, European Mathematical Society.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47B38.

Key words and phrases. Lebesgue measure, bounded operator, contraction, Gaussian kernels.

The proof of this result follows a technique initiated by Weissler in Theorem 1 of [6]. Weissler sated the exact region of boundedness for the Hermite semigroup.

We conclude this paper by giving sufficient conditions in both degenerate and nondegenerate cases for the operator $\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}$, $\beta,\varepsilon,\delta,\xi,\gamma\in\mathbb{R}$, to be a contraction over $L^p(\mathbb{R})$, 1 , and a contraction as an operator from $L^2(\mathbb{R})$ into $L^p(\mathbb{R})$, 0 . These results follow those given in Chapter 8of [1].

Throughout this paper we will take square roots with positive real part.

2. BOUNDEDNESS PROPERTIES

For $1 \le p \le \infty$, let $(I_p f)(x) = (2\pi)^{-1/2p} \cdot \exp(-x^2/2p) \cdot f(x)$. For $z \in \mathbb{C}$, let $(Q_z f)(x) = e^{zx} \cdot f(x)$. For $\gamma^* > 0$, let $(T_{\gamma^*} f)(x) = f(\gamma^* x)$. Also, for $\alpha^* \in \mathbb{C}$, let $(M_{\alpha^*}f)(x) = \exp(-\alpha^* x^2/2) \cdot f(x)$. The Gauss-Weierstrass semigroup on \mathbb{R} is given by

$$(e^{z\Delta}f)(x) = (4\pi z)^{-1/2} \cdot \int_{-\infty}^{+\infty} \exp[-(x-y)^2/4z] \cdot f(y) \, dy, \qquad x \in \mathbb{R},$$

where $\operatorname{Re} z \ge 0$ (and $z \ne 0$). Finally, we denote by $\|\mathscr{F}_{\beta,\varepsilon,\delta,\varepsilon,\gamma}\|_{p,q}$ the norm of $\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}$ as a map from $L^p(\mathbb{R})$ into $L^q(\mathbb{R})$, $1 \le p, q \le \infty$. It is easy to check that for any $\gamma^* > 0$ and $\operatorname{Re} \delta \ge 0$,

(2.1)
$$\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma} = (\pi\gamma^*/\delta)^{1/2} (2\pi)^{(1/2p)-(1/2q)} Q_{\xi} I_q^{-1} M_{\beta^*} T_{\gamma^*} e^{(\gamma^*/4\delta)\Delta} M_{\alpha^*} I_p Q_{\gamma},$$

where

$$\alpha^* = 2\varepsilon - \frac{1}{p} - \frac{2\delta}{\gamma^*}, \qquad \beta^* = 2\beta + \frac{1}{q} - 2\gamma^*\delta.$$

We will denote by q' the exponent conjugate to q.

Theorem 2.1. The following hold:

(i) If $1 \le p \le q \le \infty$, $\operatorname{Re} \delta > 0$, and $\operatorname{Re} \varepsilon > 0$, then $\mathscr{F}_{\beta,\varepsilon,\delta,\varepsilon,\gamma}$ is bounded from $L^{p}(\mathbb{R})$ to $L^{q}(\mathbb{R})$ if and only if

$$(\operatorname{Re} \varepsilon) \cdot (\operatorname{Re} \beta) \ge (\operatorname{Re} \delta)^2.$$

(ii) If $1 \le q , <math>\operatorname{Re} \delta > 0$, and $\operatorname{Re} \varepsilon > 0$, then $\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}$ is bounded from $L^{p}(\mathbb{R})$ to $L^{q}(\mathbb{R})$ if and only if

$$(\operatorname{Re}\varepsilon)\cdot(\operatorname{Re}\beta)>(\operatorname{Re}\delta)^2.$$

(iii) If $1 \le p$, $q \le \infty$, $\operatorname{Re} \delta = 0$, $\frac{1}{4} - \frac{1}{2p} \le \operatorname{Re} \varepsilon \le \frac{1}{2} - \frac{1}{2p}$, and $\operatorname{Re} \beta \ge \frac{1}{2} - \frac{1}{2p}$ $\operatorname{Re} \varepsilon + \frac{1}{2p} - \frac{1}{2q'} \geq 0$, then $\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}$ is bounded from $L^p(\mathbb{R})$ to $L^q(\mathbb{R})$ if and only if $\operatorname{Re} \varepsilon \geq 0$.

(iv) If $1 \leq p$, $q \leq \infty$, $\operatorname{Re} \delta = 0$, $\frac{1}{2p} - \frac{1}{2q'} \leq \operatorname{Re} \beta \leq \operatorname{Re} \varepsilon + \frac{1}{2p} - \frac{1}{2q'}$, and $\frac{1}{4} - \frac{1}{2q'} \leq \operatorname{Re} \beta \leq \frac{1}{2} - \frac{1}{2q'}$, then $\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}$ is bounded from $L^p(\mathbb{R})$ to $L^q(\mathbb{R})$ if and only if $\operatorname{Re} \varepsilon \geq 0$ and $\operatorname{Re} \beta \geq 0$.

Proof. Suppose first that $\operatorname{Re} \delta = 0$, $\frac{1}{4} - \frac{1}{2p} \leq \operatorname{Re} \varepsilon \leq \frac{1}{2} - \frac{1}{2p}$, $\operatorname{Re} \beta \geq \operatorname{Re} \varepsilon + \frac{1}{2p} - \frac{1}{2p}$ $\frac{1}{2q'} \ge 0$, and $1 \le p$, $q \le \infty$. Now, if $\operatorname{Re} \varepsilon \ge 0$, $\operatorname{Re} \beta \ge 0$, and *m* is a real number such that $\operatorname{Re} 2\varepsilon + \frac{1}{p} = \frac{1}{m}$, we have $1 \le m \le 2$, and the Hausdorff-Young inequality yields that $e^{(\gamma^*/4\delta)\Delta}$ is bounded from $L^m(\mathbb{R})$ into $L^{m'}(\mathbb{R})$ (m' is the exponent conjugate to m). But from the hypothesis $\mathscr{F}_{\beta-(1/2q), \varepsilon+(1/2p), \delta, \xi, \gamma}$ is bounded from $L^m(\mathbb{R}, e^{-x^2/2} dx)$ into $L^{m'}(\mathbb{R}, e^{-x^2/2} dx)$. Since $p \ge m$ and $q \le m'$, the operator $\mathscr{F}_{\beta-(1/2q),\varepsilon+(1/2p),\delta,\xi,\gamma}$ is bounded from $L^p(\mathbb{R}, e^{-x^2/2} dx)$ into $L^q(\mathbb{R}, e^{-x^2/2} dx)$, $1 \le p, q \le \infty$, and therefore $\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}$ is bounded from $L^p(\mathbb{R})$ into $L^q(\mathbb{R})$.

For the case $\operatorname{Re} \delta = 0$, $\frac{1}{2p} - \frac{1}{2q'} \leq \operatorname{Re} \beta \leq \operatorname{Re} \varepsilon + \frac{1}{2p} - \frac{1}{2q'}$, $\frac{1}{4} - \frac{1}{2q'} \leq \operatorname{Re} \beta \leq \frac{1}{2} - \frac{1}{2q'}$, and $1 \leq p$, $q \leq \infty$, the proof is similar.

Now assume $\operatorname{Re} \delta > 0$, so that $\operatorname{Re}(\gamma^*/4\delta) > 0$ and therefore, for $1 \leq p \leq q \leq \infty$, $e^{(\gamma^*/4\delta)\Delta}$ is bounded from $L^p(\mathbb{R})$ into $L^q(\mathbb{R})$. Since $\operatorname{Re} \varepsilon \geq 0$, $\operatorname{Re} \beta \geq 0$, and $(\operatorname{Re} \varepsilon) \cdot (\operatorname{Re} \beta) \geq (\operatorname{Re} \delta)^2$, γ^* can be chosen so that $\operatorname{Re} \alpha^* \geq 0$ and $\operatorname{Re} \beta^* \geq 0$. It follows from (2.1) that $\mathscr{F}_{\beta-(1/2q),\varepsilon+(1/2p),\delta,\xi,\gamma}$ is bounded from $L^p(\mathbb{R}, e^{-x^2/2} dx)$ into $L^q(\mathbb{R}, e^{-x^2/2} dx)$, $1 \leq p, q \leq \infty$, and hence $\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}$ is bounded from $L^p(\mathbb{R})$ into $L^q(\mathbb{R})$.

For the case $1 \le q and from the conditions <math>\operatorname{Re} \varepsilon \ge 0$, $\operatorname{Re} \beta \ge 0$, and $(\operatorname{Re} \varepsilon) \cdot (\operatorname{Re} \beta) > (\operatorname{Re} \delta)^2$, γ^* can be chosen so that $\operatorname{Re} \alpha^* > 0$ and $\operatorname{Re} \beta^* > 0$. Observing that M_{β^*} is a bounded map from $L^p(\mathbb{R})$ into $L^q(\mathbb{R})$ for $\operatorname{Re} \beta^* > 0$ and since $e^{(\gamma^*/4\delta)\Delta}$ is bounded over $L^p(\mathbb{R})$, equality (2.1) implies that $\mathscr{F}_{\beta^-(1/2q),\varepsilon^+(1/2p),\delta,\xi,\gamma}$ is bounded from $L^p(\mathbb{R}, e^{-x^2/2}dx)$ into $L^q(\mathbb{R}, e^{-x^2/2}dx)$, $1 \le q . Therefore, <math>\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}$ is bounded from $L^p(\mathbb{R})$ into $L^q(\mathbb{R})$.

In order to prove the converse, suppose $\|\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}\|_{p,q} < \infty$. We will prove that $\operatorname{Re} \varepsilon \geq 0$, $\operatorname{Re} \beta \geq 0$, and $(\operatorname{Re} \varepsilon) \cdot (\operatorname{Re} \beta) \geq (\operatorname{Re} \delta)^2$ and that $(\operatorname{Re} \varepsilon) \cdot (\operatorname{Re} \beta) > (\operatorname{Re} \delta)^2$ holds if q < p. To this end, we need to calculate the action of $\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}$ on an arbitrary Gaussian function $g_s(y) = e^{sy^2}$, $s \in \mathbb{C}$, $y \in \mathbb{R}$. Then $\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}$ can be computed for $\operatorname{Re} s < \operatorname{Re} \varepsilon$ to obtain (2.2)

$$(\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}g_{s})(x) = \left(\frac{\pi}{\varepsilon-s}\right)^{1/2} \cdot \exp\left(\frac{\delta^{2}-\beta\varepsilon+\beta s}{\varepsilon-s}x^{2} + \frac{\delta\gamma+\xi\varepsilon-\xi s}{\varepsilon-s}x + \frac{\gamma^{2}}{4(\varepsilon-s)}\right),$$

with $x \in \mathbb{R}$.

We impose that $g_s \in L^p(\mathbb{R})$ so that $\operatorname{Re} s < 0$. Now, we want (2.2) to be in $L^q(\mathbb{R})$. With this purpose, let us consider the transformation L(s), given by

$$L(s) = \frac{\delta^2 - \beta \varepsilon + \beta s}{\varepsilon - s}.$$

If $\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma} \in L^q(\mathbb{R})$, then $\operatorname{Re} L(s) < 0$. Note that L maps ε to ∞ . Therefore, given the line $\operatorname{Re} s = 0$, there exists a circle C passing through ε such that L applies C into the line $\operatorname{Re} s = 0$. We claim that $\operatorname{Re} \varepsilon \geq 0$. In fact, assume that $\operatorname{Re} \varepsilon < 0$. Then $\operatorname{Re} s < \operatorname{Re} \varepsilon < 0$. Let s_0 be a point of the circle C satisfying $\operatorname{Re} s_0 < 0$ and $\operatorname{Re} L(s_0) = 0$. Assume that $s \to s_0$ with the restrictions $\operatorname{Re} s \leq -\varepsilon^*$ ($\varepsilon^* > 0$) and $\operatorname{Re} L(s) < 0$. Then g_s remains bounded in $L^p(\mathbb{R})$ as $s \to s_0$, while $\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}$ blows up in $L^q(\mathbb{R})$. This is a contradiction because $\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}$ is bounded, and we conclude that $\operatorname{Re} \varepsilon \geq 0$.

In order to verify that $\operatorname{Re} \beta \geq 0$, let

(2.3)
$$L_1(s) = L(s) + \beta = \frac{\delta^2}{\varepsilon - s}.$$

Taking $\operatorname{Re} s = -\varepsilon^*$ ($\varepsilon^* > 0$) and noting that $\operatorname{Re} s < 0$ implies $\operatorname{Re} L(s) < 0$, we have

(2.4)
$$\operatorname{Re} L_1(s) = \operatorname{Re} L(s) + \operatorname{Re} \beta \leq \operatorname{Re} \beta.$$

Now, letting s tend to infinity along the line $\operatorname{Re} s = -\varepsilon^*$, we see that $0 \leq \lim_{s \to s_0} \operatorname{Re} L_1(s) \leq \operatorname{Re} \beta$, whence $\operatorname{Re} \beta \geq 0$. Thus $\operatorname{Re} \varepsilon \geq 0$ and $\operatorname{Re} \beta \geq 0$.

Next suppose that $\operatorname{Re} \varepsilon > 0$. In this case L_1 carries the line $\operatorname{Re} s = 0$ into a circle C_1 passing through 0. By (2.4), to prove that $(\operatorname{Re} \varepsilon) \cdot (\operatorname{Re} \beta) \ge (\operatorname{Re} \delta)^2$, it suffices to show that some point on that circle has real part

$$[\operatorname{Re} \delta]^2 \cdot [\operatorname{Re} \varepsilon]^{-1}.$$

Denote such a point by s_1 . From (2.4) we obtain

$$\operatorname{Re} L_1(s_1) \leq \operatorname{Re} \beta,$$

so that $(\operatorname{Re} \varepsilon) \cdot (\operatorname{Re} \beta) \ge (\operatorname{Re} \delta)^2$. The center of the circle C_1 is $\frac{1}{2}L_1(s_2)$, where s_2 minimizes $|\varepsilon - s|$ subject to the condition $\operatorname{Re} s = 0$. It is easy to check that $\frac{1}{2}L_1(s_2) + |\frac{1}{2}L_1(s_2)|$ has the desired real part.

Finally, if q < p, we must show that the equality cannot hold in $(\operatorname{Re} \varepsilon) \cdot (\operatorname{Re} \beta) > (\operatorname{Re} \delta)^2$. Indeed, if it did, then γ^* could be chosen so that $\operatorname{Re} \alpha^* = \operatorname{Re} \beta^* = 0$ in (2.1). Then (2.1) would imply that $e^{(\gamma^*/4\delta)\Delta}$, with $\operatorname{Re}(\gamma^*/4\delta) > 0$, is bounded from $L^p(\mathbb{R})$ into $L^q(\mathbb{R})$, which is false. \Box

3. CONTRACTION PROPERTIES

The purpose of this section is to give sufficient conditions in order that the operator $\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}$ (for degenerate and nondegenerate cases), $\beta, \varepsilon, \delta, \xi, \gamma \in \mathbb{R}$, be a contraction over $L^p(\mathbb{R})$, $1 , and a contraction as an operator from <math>L^2(\mathbb{R})$ into $L^p(\mathbb{R})$, 0 .

The next results are motivated by Chapter 8 of [1].

Theorem 3.1. Let $1 , and assume <math>\varepsilon > 0$ and $\delta^2 < p'\beta\varepsilon$ (here, p' denotes the exponent conjugate to p). For all $f \in L^p(\mathbb{R})$, we have (3.1)

$$\begin{aligned} \|\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}f\|_{p}^{p} &\leq H \cdot \int_{-\infty}^{+\infty} \exp\left\{ [\delta^{2}/(\beta p - (p/p') \cdot (\delta^{2}/\varepsilon)) - \varepsilon] y^{2} + [\gamma + (\delta \cdot (\xi p + (p/p') \cdot (\gamma \delta/\varepsilon)))/(\beta p - (p/p') \cdot (\delta^{2}/\varepsilon))] y \right\} \cdot |f(y)|^{p} \, dy \,, \end{aligned}$$

where

$$H = (\pi/\varepsilon)^{p/2p'} \cdot (\pi/(\beta p - (p/p') \cdot (\delta^2/\varepsilon)))^{1/2} \\ \cdot \exp\{(p\gamma^2/4\varepsilon p') + ((\xi p + (p/p') \cdot (\gamma\delta/\varepsilon))^2)/(4 \cdot (\beta p - (p/p') \cdot (\delta^2/\varepsilon)))\}.$$

Proof. By writing

$$(\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}f)(x) = \int_{-\infty}^{+\infty} \{(\exp[-\beta x^2 - \varepsilon y^2 + 2\delta xy + \xi x + \gamma y])^{1/p} \cdot f(y)\} \\ \cdot \{(\exp[-\beta x^2 - \varepsilon y^2 + 2\delta xy + \xi x + \gamma y])^{1/p'}\} dy,$$

1188

 $x \in \mathbb{R}$, and applying Hölder's inequality, it follows that

$$|(\mathscr{F}_{\beta,\varepsilon,\delta,\zeta,\gamma}f)(x)| \leq \left(\int_{-\infty}^{+\infty} \exp[-\beta x^2 - \varepsilon y^2 + 2\delta xy + \xi x + \gamma y] \cdot |f(y)|^p \, dy\right)^{1/p} \cdot \left(\int_{-\infty}^{+\infty} \exp[-\beta x^2 - \varepsilon y^2 + 2\delta xy + \xi x + \gamma y] \, dy\right)^{1/p'}.$$

Since for $\varepsilon > 0$,

$$\int_{-\infty}^{+\infty} \exp[-\beta x^2 - \varepsilon y^2 + 2\delta xy + \xi y + \gamma x] dy$$

= $(\pi/\varepsilon)^{1/2} \cdot \exp[((\delta^2/\varepsilon) - \beta)x^2 + (\xi + (\delta\gamma/\varepsilon))x + (\gamma^2/4\varepsilon)],$

we arrive at the estimate

$$\begin{aligned} |(\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}f)(x)|^{p} \\ &\leq (\pi/\varepsilon)^{p/2p'} \cdot \exp[p\gamma^{2}/4\varepsilon p'] \\ &\quad \cdot \int_{-\infty}^{+\infty} \exp[-(\beta p - (p/p') \cdot (\delta^{2}/\varepsilon))x^{2} - \varepsilon y^{2} + 2\delta xy \\ &\quad + (\xi p + (p/p') \cdot (\gamma\delta/\varepsilon))x + \gamma y] \cdot |f(y)|^{p} dy. \end{aligned}$$

After integration with respect to x, the theorem follows. \Box

Corollary 3.1. Under the same hypothesis and notation of Theorem 3.1, we set

$$A = \delta^2 / (\beta p - (p/p') \cdot (\delta^2/\varepsilon)) - \varepsilon$$

and

$$B = \gamma + (\delta \cdot (\xi p + (p/p') \cdot (\gamma \delta/\varepsilon)))/(\beta p - (p/p') \cdot (\delta^2/\varepsilon)).$$

Then,

(a) If
$$A = 0$$
 (or equivalently, $\delta^2 = \beta \cdot \varepsilon$) and $B = 0$, one has

$$\|\mathscr{F}_{\beta,\varepsilon,\delta,\zeta,\gamma}f\|_{p} \leq H^{1/p} \cdot \|f\|_{p} \quad \text{for all } f \in L^{p}(\mathbb{R}).$$

Note that if $H \leq 1$, we obtain

$$|\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}f||_p \leq ||f||_p \text{ for all } f \in L^p(\mathbb{R}).$$

(b) If A < 0 (or equivalently, $\delta^2 < \beta \cdot \varepsilon$), then

$$\|\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}f\|_{p} \leq (H \cdot \exp(B^{2}/4A))^{1/p} \cdot \|f\|_{p} \text{ for all } f \in L^{p}(\mathbb{R}).$$

Note that if $H \cdot \exp(B^2/4A) \leq 1$, we obtain

$$\|\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}f\|_{p} \leq \|f\|_{p} \quad \text{for all } f \in L^{p}(\mathbb{R}).$$

Remark. For $1 , <math>\varepsilon > 0$, $\delta \neq 0$, and $\delta^2 = \beta \varepsilon$, the question of contractivity remains open if $B \neq 0$ or H > 1. This question also remains open for $1 , <math>\varepsilon > 0$, and $\delta^2 < \beta \varepsilon$, if $H \cdot \exp(B^2/4A) > 1$.

Theorem 3.2. Let $0 , and assume <math>\varepsilon > 0$ and $\delta^2 < \beta \varepsilon$. Then, for all $f \in L^2(\mathbb{R})$,

(3.2)
$$\|\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}f\|_{p} \leq H^{*} \cdot \|f\|_{2},$$

where

$$H^* = (2\pi)^{1/4} \cdot (4\varepsilon)^{-1/4} \cdot (\pi/p)^{1/2p} \cdot (\beta - (\delta^2/\varepsilon))^{-1/2p} \\ \cdot \exp\{(\gamma^2/4\varepsilon) + (p \cdot (\xi + (\delta\gamma/\varepsilon))^2)/(4 \cdot (\beta - (\delta^2/\varepsilon)))\}.$$

Proof. By Schwarz's inequality and the evaluation of a Gaussian integral, we obtain for $f \in L^2(\mathbb{R})$,

$$|(\mathscr{F}_{\beta,\varepsilon,\delta,\zeta,\gamma}f)(x)| \le (2\pi)^{1/4} \cdot (4\varepsilon)^{-1/4} \cdot \exp[((\delta^2/\varepsilon) - \beta)x^2 + (\zeta + (\delta\gamma/\varepsilon))x + (\gamma^2/4\varepsilon)] \cdot ||f||_2.$$

Again, by evaluating a Gaussian integral (3.2) follows. \Box

Corollary 3.2. Under the same conditions and notation of Theorem 3.2, if $H^* \leq 1$, then

$$\|\mathscr{F}_{\beta,\varepsilon,\delta,\xi,\gamma}f\|_{p} \leq \|f\|_{2} \text{ for all } f \in L^{2}(\mathbb{R}).$$

References

- 1. J. C. Baez, I. E. Segal, and Z. Zhou, *Introduction to algebraic and constructive quantum field theory*, Princeton Ser. Phys., Princeton Univ. Press, Princeton, NJ, 1992.
- 2. J. B. Epperson, The hypercontractive approach to exactly bounding an operator with complex Gaussian kernel, J. Funct. Anal. 87 (1989), 1-30.
- 3. G. B. Folland, Harmonic analysis in phase space, Ann. of Math. (2) 122 (1989).
- 4. R. E. Howe, *The oscillator semigroup*, The Mathematical Heritage of Hermann Weyl (Durham, NC, 1987), Proc. Sympos. Pure Math., vol. 48, Amer. Math. Soc., Providence, RI, 1988, pp. 61–132.
- 5. E. H. Lieb, Gaussian kernels have only Gaussian maximizers, Invent. Math. 102 (1990), 179-208.
- 6. F. B. Weissler, Two-point inequalities, the Hermite semigroup, and the Gauss-Weierstrass semigroup, J. Funct. Anal. 32 (1979), 102-121.

Deparatmento de Analisis Matematico, Universidad de la Laguna, 38271, Canary Islands, Spain

E-mail address: enegrin@ull.es

1190