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FRAME PERTURBATIONS

OLE CHRISTENSEN

(Communicated by Palle E. T. Jorgensen)

Abstract. We consider the stability of Hubert space frames under perturba-

tions. Our results are in spirit close to classical results for orthonormal bases,

due to Paley and Wiener.

A frame can be viewed as a "generalized orthonormal basis"; if {/},e/ is a
frame for the Hubert space ff, then any / £ 3? can be written as an infinite
linear combination of the elements /. The coefficients do not need to be
unique, and in general the expansion is nonorthogonal. But frames are a much

more flexible tool than orthonormal bases, and they play a big role in wavelet

theory.
It is a classical result that a sufficiently small perturbation of an orthonormal

basis gives a Riesz basis. Our aim here is to consider the similar problem for
frames. Our approach is motivated by the book [Y] and a result in [H] about

perturbations of atoms in Banach spaces.

Let ¿^ be a separable Hubert space, with the inner product (•, •) linear in

the first entry.
A family {/},6/ of elements in ß? is called a Bessel sequence if

(1) 3B>0: ^\(f,fi)\2<B\\f\\2   V/€áT.
i€I

If {fi}tei is a Bessel sequence, then ¿~^ieICifi converges unconditionally

for all {c,} e l2(I) and the mapping T: {c,} >-y J2ieicifi *s bounded from

I2(I) into ßf, with || y|| < \/B. Composing T with the adjoint operator

T*: /•-»{(/, f)}iei we get the frame operator

S:Jr-*jr,       S/= £</,/,)/■.
16/

The Bessel sequence {/■}/£/ is called a frame if

(2) 3^>0:^||/||2<^|(/,/)|2   V/e-T.
¿6/
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Any pair of numbers A and B such that (1) resp. (2) are satisfied will be called

a set of frame bounds. The smallest possible upper bound is

sup 53|(/, />|2 = sup |(5/, f)\ = \\S\\ = ||T||2.
11/11=1= 1 ,

16/

If {/},e/ is a frame, then S has a bounded inverse, defined on all of ßif ; this

fact leads to the important frame decomposition

f=ss-xf=^(s-1/, m = D/' s~lf''f' vfe x-
¿6/ ¡6/

{S '/-}i6/ is also a frame, usually called the dual frame, as bounds one can

use ¿ and ^.

Theorem 1. Let {/},e/ be a frame for %?, with bounds A and B. Any family

{gi}iei of elements in %? such that

R^M-gifKA
16/

¿j a frame for %T with bounds A(l - yj^)2 and 5(1 + y^f)2.

Proof. Denote the frame operator for {/},e/ by S. The assumptions imply
that {gi}iei is a Bessel sequence, so we can define a bounded linear operator

U:*^*,        C//:-5](/,S-1/)g;'.
16/

Now,

2

\\f-uf\\2 =
¿6/

R,

£</, s-1/)/- </, s-1/^,
¿6/

<^\(f,s-xf)\2.J2\\fi-gi\\2<^\\f\\2 v/e-r.
16/ 16/

That is, ||7 - £/|| < yf < 1. So U is invertible, and

ii^i<i + Vf. \u-x\\<
1

Any / £ %? can be written as

f=UU-xf = y£(U-xf,S-lf)gi;
16/

thus
|2

ll/ll4 = (T(u-Xf,s-Xf)gl,f\

^^KC/-1/^-1/)!2-^!^'/)!

16/

2

(6/ ¡6/

<^l|t/-7ll2£l<s,,/)l2< ll/ll2

16/ ¿(1 R\2     T~T-r   i€i
£l<Si,/}|2   v/e^'
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So

Al /f) U/H2 <D^'//f   v/e-r.
/ 16/

Now define

T:l2(I)^ß?,       T{a}:=Y,cM-
16/

The frame operator for {g,},g/ is TT*, so the optimal upper frame bound

for {gj}iei is ||T||2. For {a} £ l2(I) we have

\\T{Ci}\\ = 5>&
16/

< ^¡(gi-fi)
16/

+ E«f*
¡6/

< (Vb + Vrm*)

So

||r||2<(v^ + v^)2 = ßii + y|j

In some sense, the result is the best possible; if Y,ieI \\f - g¡\\ = A > then

{gi}iei does not even need to be total in %?. For example, if {/-}~i is an

ONB, then {/■}£, is a frame with A = B = 1. If we define gx = 0, gt = f ,

i>2, then ¿;6/1|/ - gi\\2 = 1 and {g¡} is not total.

Lemma 2. Let {/},e/ be a frame for %?. If J ç I is finite, then {/},e/-/ *s

a frame for spân{/},e/_y.

Proof. Let 7 £ I ; it is enough to prove that {ft}i¿j is a frame for spañ{/},y7.

Let P denote the orthogonal projection on spän{/}^; . Then {ft}¡¿j U {Pfj}
is a frame for span{/},y;. But {/},^ is total in spañ{/},¿, and therefore
itself a frame for spanf/},'^, ; cf. [DS, Lemma 9].

Two families {/},e/ and {g,},e/. are said to be quadratically close if

Eli"  ~"2& < 00.

¿6/

Theorem 3. Lei {/},e/ be a frame and {g,},e/ a family which is quadratically

close to {fi}iei- Then {g,},e/ isaframeforspâi\{gi}i€l.

Proof. Again let A denote a lower frame bound for {/},£/. There exists

a finite index set J ç / such that Yli^i-jWfi ~ 8i\\2 < A. By Theorem 1
{/}i6/ u {gi}iei-J is a frame for J". Now Lemma 2 shows that {g¡}¡ei-j is

a frame for spañ{g,}/e/_y .
{ft}/6/ is a Bessel sequence in ¿^. Observe that

spänUi}ie/ = spañ{ g,},e/_./ + span{g,},€/ ;

it follows that the operator

T: l2(I) - spañ{£i},6/,        T{Ci) := £ cigi
16/

is surjective.   Now [C, Corollary 4.2] implies that  {g,},e/  is a frame for

spän{£,},6/ •

Remark. Let G be a topological group and n a strongly continuous unitary rep-

resentation of G on the Hubert space ßf?. In wavelet analysis one is interested
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in coherent frames, i.e., frames of the form {7r(x,)}¡e/ , where {x,}¡€/ is a set
of group elements and / £ 2? (see [D, DGM, HW]). Our results cannot be ap-

plied to perturbations of /, since \\n(xj)f- n(Xi)g\\ — ||/- g\\. But if {j>,}¡g/

is another family of group elements, then \\n(Xi)f-n(yi)f\\ - \\f-n(x~ly¡)f\\.
So our results show that {7r(j>,)/}ie/ is a frame if {y,},e/ is sufficiently close
to {Xi}iç.i. We shall not go into details with concrete calculations here.

Acknowledgment

The author thanks H. G. Feichtinger and the Department of Mathematics at

the University of Vienna.

References

[C] O. Christensen, Frames and pseudo-inverses, J. Math. Anal. Appl. (to appear).

[D] I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE

Trans. Inform. Theory 36 (1990), 961-1005.

[DGM] I. Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expansion, J. Math.

Phys. 27 (1986), 1271-1283.

[DS]     R. Duffin and A. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc.

72 (1952), 341-366.

[H]       C. Heil, Wiener amalgam spaces in generalized harmonic analysis and wavelet theory, The-

sis, Univ. of Maryland, 1990.

[HW]    C. Heil and D. F. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 ( 1989),

628-666.

[Y]       R. Young, Nonharmonic Fourier series, Academic Press, New York, 1980.

Department of Mathematics, The Technical University of Denmark, Building 303,
2800 Lyngby, Denmark

E-mail address : olechrQmat. dth. dk


