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CESARO MEANS OF FOURIER SERIES ON ROTATION GROUPS
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(Communicated by J. Marshall Ash)

Abstract. We study the Cesàro means of Fourier series on rotation groups

SO(3) and SO(4). On these two classical groups, we solve an open ques-

tion recently posted in Harmonic analysis on classical groups [Springer-Verlag,

Berlin, and Science Press, Beijing, 1991].

Let SO(«) be the rotation group on R" . By [H], it is known that one can
identify SO(«) as the characteristic manifold of the classical domain A%n which
was studied by E. Cartan (see [C] for the definition of 3ln ). To solve the Dirich-

let problem on 3ln , Hua proved, from the view of several complex variables,

that the Poisson kernel on 3in is (see [H])

_ det(7 - XqX'0)^-^I2

deX(I - XoT'Y

where I is the identity element in SO(«) and X' is the transpose of a matrix
X.

From the above explicit formula of the Poisson kernel, Gong defined the

Cesàro kernel on SO(n) as follows (see [G, p. 140]).
Let dV be the normalized Haar measure of SO(«). For a > -1 and any

positive integer N, let A% = (a + N) ■ ■ ■ (a + 1)/N\. Then the Cesàro kernel

K%(V) on SO(n) is defined by

(2) K%(V) = detC-»/2 Í | Afrl + Yjiyi + V'J) ¿AT1 \ Mfr J /B%,

where

(3) B% = J      det<"-'>/2 IIa%I + ¿(I" + V'J) ¿^"» i ¡A%\ dV.

We easily see, from the above definition, that for any integer N and any V e

SO(«),

(4) /      KaN(UV)dU = l.
JSO(n)
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Because SO(2) can be identified with the one-dimensional torus T, it is also

easy to see that the above definition (2) is the classical (c, a) kernel of the

Fourier series on T (see [Z]) when n = 2.
In [G], Gong proved the following convergence theorem on SO(n) :

Theorem A. Suppose that f is any continuous function on SO(n). If the index

a is greater than (n - 2)/(n - 1), then

(5) lim(K%*f)(V) = f(V).
N—>oo

It is a well-known fact that (see [Z]) in Theorem A the condition a >

(n - 2)l(n - 1) is sharp for n = 2. Thus, Gong posed an open question:

whether the condition a > (n - 2)/(n - 1) can be improved when n > 3 ?
In this note, we solve the above question on SO(3) and SO(4). The main

result consists of the following two theorems.

Theorem 1 (Result on SO(3) ). (i) Suppose that f is a continuous function on

SO(3) .Ifao = \, then for any V e SO(3), lim^oo^ * f)(V) = f(V).
(ii) For any a e (-1, ¿) there is a C°° function g(V) on SO(3) such that

M(KaN*g)(I)¿g(I).
N—KXl

Theorem 2 (Result on SO(4) ). (i) Let a0 = \ ; then

\K%°(V)\dV>AlogN   asN^oo.
Jsc/SO(4)

(ii) For ae (-1,0),

/      \K%(V)\dV>AN   asN
JSO{4)

(iii) For a€ (\, f),

\K%(V)\dV > AN2~3a   as N-^ oo.L/SO(4)

(iv) For ae[0, ¿),

\K%(V)\dV > ANx~a   asN^oo.L/SO(4)

(v)

/      \KlJ2(V)\dV> ANXI21'logN   asN^oo.
JSO(4)

In the above formulas, A is a constant independent of N.

Notes. By the well-known Banach-Steinhaus theorem, Theorem 2 implies that

Theorem A fails on SO(4) if a € (-1, |].
Before proving these two theorems, we need to derive a more explicit formula

of the kernel K%(V).
Let S(d) be the 2 x 2 matrix

/ cos 6     sin 8 \

\ - sin 6   cos 6 )
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and C(6) be the 2x2 matrix

/coso      0   \
V   0      cosé.J

Recall that any V e SO(2k) is conjugate to a 2k x 2k matrix T(8) which

is 5(öi) © S(62) e • • • 0 S(6k) and that any V e SO(2k + 1) is conjugate to a
(2fc+l)x(2ik+l) matrix T(8) which equals S(8x)®S(82)®---®S(8k)®l,
where (8x, 82, ... , 8k) is a coordinate satisfying

—n <9j <n,       j = 1,2, ... , k.

Noticing that Ylu=o A"~l = K-j (see tz> P- 77j) and that the determinant is

a central function, we easily see that

K%(V) = deX{-n~x^2 Í ¡A%I + ^(T(dy + T(e)'J)A%_j\/AN\ IB%.

Using induction, we also easily obtain that

(6) T(d)J = T(j8)    and    T(6)'J= T(jd)'.

Thus by the definition of T(6), if n = 2k, then

(7) T(0y + T(6)'J = 2kC(jdx) © C(j02) © • • • © C(j8k).

In this case we obtain that

a%i + Y,{T{ey + T(eyj)A%_j 1 /a%

is a 2k x 2k matrix:

°%(0\) © °n(0i) © °n(0i) © °n(0i) © • • • © o%(Qk) © o%(Bk),

where 0^(8) = \ + J^li cos j 6A<^_j/A^f is the one-dimensional Cesàro kernel

(see [Z, 1.14, p. 77 and 5.2, p. 94]). Therefore, by noticing the definition of
Bff, we clearly see that the Cesàro kernel on SO(2k) is

k
(8) KaN(V) = Y[{oaN(8j)}2k-l/B%,

where

Ä-v=     /'"/    Íl{°N(0j)}2k-1    EÍ   (cos8¡-cos8j)2d8x---d8k
-"<9k<-<9\<n

j=\ \<i<j<k

and rii<,<;<yt(cos 0/ -cos 0.)2 is the Weyl function, up to a constant multiplier,

on SO(2ifc) "(see [W]).
If n = 2k + 1, then

(9) T(0y + T(8)'J = 2k+xC(j8x) © C(j82) © • • • © C(j8k) © 1.
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Similar to-the case of n = 2k, we easily see that

N

A%I + Y,(T(ey + T(8)'J)A%_j/AaN
j=l

= o%(0x) © a%(6x) © • • • © a%(ek) © a%(dk) © (2N + 1).

Thus the Cesàro kernel on SO(2/c + 1) is

k

(10) K"N(V) = l[{cT%(dj)}2k/B%,

where

Èn=     /■••/     ÍWío;)}2*
-»<eJt<-<t9i<» ■/=1

x ( 1 - cos8j)    Yl   (cose¡ - cosGj)2d8x ■■■d8k
\<i<j<k

and

Y[ ( 1 - cos 8j )    Yl   (cos 0/ - cos 8j )
j=\ \<i<j<k

is the Weyl function, up to a constant multiplier, on SO(2/c + 1) (see [W]).
Recall the following estimates of the classical Cesàro kernels:

Lemma 1. If a > -1 and \8\ < N~x, then BN > o%(6) > AN, where A, B

are positive constants independent of 8 and N. If a > -1 and \8\ > N~x,
then

(u)       {crU^}n = ^n{(N + (l+a)/2)8-7ia/2}/(a)"N(2sin(d/2))"^+x^}

<•    > +o(N-{n-x)a-x8~{n~x){a+x)-2),

where (a)N = T(a + N+ l)/{T(a + l)F(N + 1)} S Na for N sufficiently large.

Proof. See [Z, pp. 77, 95] for the proof.   D

Now we are ready to prove the main theorems.

Proof of Theorem 1. Let d(U, I) be the Euclidean distance between U and

/; then d(U, I) = 2'/2(l - coso)1/2, where U is conjugate to the element
S(0)©1 (see[G,p. 153]). Wedenote the modulus of continuity of a continuous
function / by co(f; Ô). Then by noticing formula (4) and that K%(V) is a
positive kernel on SO(2/c + 1), we have

\(K$*f)(V)-f(V)\

=   [     KaN°(U){f(U-xV)-f(V)}dU
JSO(3)

< co(f; 20) [      K%«(U)dU + 2II/IU /      KaN°(U)dU
J\e\<s J\6\>s

<£»(/; 25)+ 2H/IU /      K%°(U)dU.
J\6\>S
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Notice that co(f; 20) goes to zero as ô tends to zero.  Thus to prove (i) in

Theorem 1, it suffices to show that for any fixed ô > 0,

(12) lim   /      Kp(U)dU = 0.
N-Kx>J\e\>s

By (10), we know that

(13) /      KaN°(U)dU= [     {a°<>(d)}2(l-cosd)dd/BaN\
J\e\>s J\o\>ö

where

B%= i" {cr%>(8)}2(1-cos 8)d8.
J—n

By the definition of the Cesàro kernel together with (11), one easily sees that

/     {o%(8)}2(l-cos8)d8
(14) Jw>-S

< N~x /       |0|-3(1 - cos8)d8 < ASN~X,
J\8\>6

where As is a constant depending only on ô .
On the other side, by ( 11 ) we have

B%°>N~X [    sin2{(N+¡)8-n/4} sin'3(8/2)(l-cos8)d8
Jl/N

+ oIn~3'2 T d-1'2^-cos 8)dd)

> N~x [   sin2{(N + 1)8 - n/4}8-xdd + 0(N~X).
Jl/N

This shows that

(15) B%°>AN-xlogN       (N^oo).

Equations (14) and (15) furnish the proof of (i) in Theorem 1.

Next let g(U) = (l-cos8) ; then g(I) = 0. We want to prove that this C°°

function g(U) furnishes the second part of Theorem 1. In fact,

(K% * g)(I) - g(I) = f      K%(U)g(U)dU = I%IBaN,
JSO(3)

where

In= I" {oaN(8)}2(l-cos8)2d8,
J—n

B%= ( {o%(8)}2(l-cosd)d8.
J—%

Noticing that a e (-1, ¿), by Lemma 1 we have

(16) B% = 0(1 ¡N) + O ¡N-2a C 8-2(a+x)+2d8\ = 0(N~2a)    asN -» oo.
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Using formula (11) and noticing a e (-1, \), we obtain that

I%>AN~2a I* sin2{(N+(l+a)l2)8-nal2)}(l-cos8)2sin-2{a+x)(8l2)d8
Jl/N

+ 0\N-a-i ¡   8-a-3(l-cos8)2dd\.

Thus, an easy computation shows that

(17) I%>AN~2a       (iV-foo).

From (16) and (17), we know that

ïîm"  /     K%(U)g(U)dU>0 = g(I).
W-°° JsO(3)

Theorem 1 is proved.   G

Proof of Theorem 2. Let a e (-1, I].   We need to calculate the Lebesgue

constant K%(V). By formula (8), we know that /SO(4) \K%(V)\dV is equal to

(18) jj     \o%(8x)o%(82)\3 (cos 8 x - cos82)2d8xdd2/BaN = J%/BaN.

-n<e2<el<n

By a symmetric argument, B% in (18) is equal to

2 f f n{^(0k)}3{(l-cos0i)-(l-cosô2)}2</0id02
J—n J—n t_.

(19)
= 21

|0.|<i/¿v |0,|>i/jv    |0,|>i/¿v
(\62\<l/N   \62\>l/N      \82\<1/n)

> = J + JJ + JJJ.

One easily sees that for any a > -1,

(20) 7 = 0(1)       (JV-foo).

By (11) again, the third term JJJ in (19) is dominated by

N3~3a /        / sin3{(N + (1 + a)/2)0i - 7ta/2}
J-l/N J\8¡\>l/N

x{\8x\-3(a+X)dí + \dx\-3a-x8¡ + \dx\-3a+x}d8xdd2\

+ 0(N2-2a í       Í {\6l\-2a-Ad}+\8i\-2a-202i+\di\-2a}d6ide2
V J-x/N J\et\>\/N

= JJJ(1) + JJJ(2).

It is easy to calculate that

( 0(logN)     ifa = i,

(21) 777(2) = < 0(Nx~2a)   ifa < \,

k 0(1) ifa>\.
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To estimate 777( 1 ), we need the following formula which can easily be proved

by integration by parts:

^e-.al2Wt,e--{ZAA if^°-

Obviously,

(22)        f
Jl/N 0(N-X-1')   if ue (-1,0).

777(1) = 0\N2-3a /    i
\ Ji/N

sin3{(N + (1 + a)/2)8x - naß} 8\~3ad8x

So by (22), we have

(23) JJJ(l) = 0(Nx~3a)    ifae(-l,i),

(24) 777(1) = 0(1)    ifae\\,\\.

Combining (21), (23), and (24), we have

'O(logJV),     a = \,

= <   0(NX~2"),    ae[0,xj),

I 0(1), a > 2 '

(25') 777 = 0(7V'-3q) ,        a e (-1, 0).

We now estimate the term 77 in (19).

Clearly,

77 = O ( f {oaN(8)}3d8x f {^(02)}3024¿02
\Jl/N Jl/N

+ 0(n /"N{oN(ek)Y82kd8k\
\k=i~xiN

= 77(1)+ 77(2).

Let si(N, 0, a) = sin{(7V + (1 +a)/2)8 - na/2}. Using the same method used
in estimating the term 777 , we easily obtain

r {e%(8)}3d8 = O ( N~3a r si3(N,d,a)8-3ia+x)d8}
Jl/N \ Jl/N J

+ 0(N-2a-l    F   d-2a-4dd\

= 0(N2).

i" {crN(8)}384d8 = 0\N-3a [
Jl/N \ Jl

(26)

si3(N,d,a)d -3a+l de

(27)

= <

l/N

+ o{n-2°-x r 8~2add)

( 0(N~2logN)    ifa = i,

i
2

0(N-2a~x)        ifa<¿,

I 0(N~2) if a > \.
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Equations (26) and (27) imply that

O(logTV)     if a 2 '

(28)

Similarly,

77(1) = <  0(NX~2°)    if a e (-1,4),

0(1) if a e (±,l).

f {oN(8)}382dd = 0\N-3a ¡* si3(N,8,a)8-3a-xd8
Jl/N \ Jl/N )

(29)

Thus,

(30) 77(2) =

+ oÍN-2a-x Ç 8~2a-2de\

(0(1) ifa€[_l,§],

~{0(N-3a-x)   ifa€(-l,-5).

0(1) if « e (-i,|],

0(N~6a~2)    ifa6(-l,-H

Combining (20), (25), (25'), (28), and (30), we obtain that

(31)

' 0(logN)     ifa-

B°n=<

2 >

0(1) ifae(^,¡],

0(Nx-2a)    ifae[0,i),

[ 0(Nx~3a)    ifae(-l.O).

On the other hand we have
2

Jn> H niff*(0*)l3sin4(0i/2)</0
o<2e2<i/N<et<n/2k=x

rn/2
>AN2 \cj%(dx)\3sin4(dx/2)dd

Jl/N

r*/2

'l/N

(32)

> AN2~3a f"   | sin3{(N + (a+ l)/2)0 - a7r/2}| sin~3a+1 0
Jl/N

+ 0(N-2a+l  Ç     Q-2add\

de

(33) JS>

Therefore, an easy computation shows that for sufficiently large N,

AlogN    if a = I,

AN2~3a    ifae(-l.f).

Finally, from (31) and (33), we know that there is a positive constant A inde-

pendent of N such that

' AlogN    if a = |,

AN2~3a    ifae(i,f),

ANx~a     ifae[0,i),

I AN ifae(-l.O)

/JS0(4)
\KaN(V)\dV>{
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and

L \K]¡2(V)\dV > ANX'21lo%N.
/SO(4)

Theorem 2 is now proved.   D

Furthermore, we can obtain an almost everywhere convergence theorem on

SO(3) :

Theorem 3. // / is a Lebesgue integrable function on SO(3), then

lim (K]¡2 * f)(U) = f(U)   for almost all U e SO(3).
N—>oo

Proof Let K*f(U) = supN>x \(K¡J2 * f)(U)\, and let Mf(<7) be the Hardy-
Littlewood maximal function of /. If we can show K*f(U) < AMf(U) with
A being a constant independent of /, then the theorem follows easily by a
standard argument (see [SW] or [B]). Checking the proof of Theorem 1, we

know that

K]l2*f(U) = (logN)~xO [N Í     {olJ2(8)}2f(UV)dV) ,

where V is conjugate to the element 5(0) © 1.

Let

TV log-1 TV" /
J&

.1/2,{ol¡\e)Yf(uv)dv
S0(3)

flog2W Ï
= log~xN{   V  N / +N }

k=0        J2k/N<d(V,I)<2k+l/N Jo<d(V,I)<l/N \

= log_1 7V/(l) + log_1 NI(2).

It is easy to see that (logN)~x\I(2)\ < AMf(U),
By Lemma 1,

log'1 N\n[ {oH2(8)}2f(UV)dV\
J2k/N<d(V ,I)<2k+i/N

< log-1 N [ \8\~3\f(UV)\ V < Alog-1 NMf(U).
J2k/N<d(V,I)<2M/Nl2k/N<d{V,I)<2k+l/N

Therefore, \KlJ2 * f(U)\ < ^Mf(t7) with A being a constant independent of
N. Theorem 3 is now proved.   D

Recently we obtained some partial results on SO(«) for n being greater than

four. In the higher-dimensional case, computations are much more complicated

than those in the cases of n = 3 and n = 4. So though this paper is working
with SO(3) and SO(4), it clearly demonstrates how to work on the higher-

dimensional cases.
Finally we want to end this paper with a conjecture which is a well-known

fact for k = 1 :

Conjecture. Let arj = (2k - 2)/(2k - 1) ; then for large N

\KN°(V)\dV*logN.LSO{2k)
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