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(Communicated by Barbara Lee Keyfitz)

Abstract. The purpose of this paper is to prove the uniqueness of positive

solutions of some particular biharmonic boundary value problems. We also

give some existence results in the sublinear case.

1. Introduction

In this paper we consider the Dirichlet problem

(1.1)

and the Navier problem

(1.2)

A2m = \u\p     in BR,

^-0   ondBR

(A2u

\ u = du

( A2u = \u\p     in BR,

\ u = Au = 0   on dBR,

where BR denotes the ball of radius R centered at the origin in R" (n > 1),

dBR is the boundary of BR, ^ is the outward normal derivative, and p £

(0, l)U(l,+oo).
We are interested in the uniqueness question for problems (1.1) and (1.2).

Our main results are the following two theorems.

Theorem 1.1. (i) Suppose n > 2. Let u e C4(BR) be a nontrivial radial solution

0/(1.1). Then u > 0 in BR and u is the unique nontrivial radial solution of

(1.1)/« C\BR).
(ii) Suppose n = 1. Let u £ C4([-R, R]) be a nontrivial solution of (l.l).

Then u > 0 in (-R, R) and u is the unique nontrivial solution o/(l.l) in

C\[-R,R]).

Theorem 1.2. Let u £ C*(BR) be a nontrivial solution of (1.2). Then u > 0 in

BR and u is the unique nontrivial solution of (1.2) in C4(BR).

When 1 < n < 3 and p > 1 the uniqueness of a positive radial solution

of problem (1.1) was proved by Dunninger and Miklavcic [3]. When n — 1
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and p > 1. the uniqueness of a positive solution of problem (1.1) was estab-

lished in [2] where we first showed that positive solutions of problem (1.1) were

symmetric about the origin. As mentioned in that paper the same proof gives

the uniqueness of a positive radial solution for n > 2 and p > 1. In the

present paper we give a simpler proof. When 0 < p < 1 we do not know any

uniqueness results and the proof given in [2] for p > 1 does not hold. As

for problem (1.2) a uniqueness result for positive radial solutions was obtained

by Peletier and van der Vorst [4] when p > 1. Our proof below is simpler.

When p > 1 the existence of a positive solution u £ C4(BR) of (1.1) was

established in [1] where more general nonlinearities are studied (actually, only

the case n > 5 was considered in [1]). Moreover, we proved in [1] that, when

n > 5 and/? > (n + 4)/(n - 4), (1.1) has no positive solution whether radial or

not. For problem (1.2) the existence of a positive solution was established in

[4] when p > 1. The existence of a positive solution of (1.1) (resp. (1.2)) in

the sublinear case 0 < p < 1 is easily obtained. Since we have not been able to

find a proof in the literature, we will discuss it briefly in the last section.
In the sequel A denotes equally the cartesian form and the polar form of the

Laplacian.
In §2 we give some lemmas which are needed in the proof of the theorems, in

particular, to establish the existence results. Theorems 1.1 and 1.2 are proved
in §3. Finally in §4 we give some existence results in the sublinear case.

2. PRELIMINARIES

The Green's function of the operator A2 for the Dirichlet problem in [0, R)

can be explicitly determined.

Lemma 2.1. The Green's function of the operator A2 for the Dirichlet problem

in [0, R) is given by Kn(t, s) = R?Ln(^ , |), where

f Xn(s) + t2Yn(s),      0<r<5<l,

"{,S)        l(f)"-'(^(0+52T„(í)),    0<5<Í<1,

with
(   t-t\\-l\nt)

8

ts-lty\nt-t3

ifn = 2,

'S-2'38ln'-'3 ifn = 4,

4(nJ)(n_4)((n - 4)t"~2 -(n- 2)t»~* + 2)   ifn¿2,4

and
(   f(l+21np-f3

Yn(t) = {

ifn = 2,

ifn = 4,

4rt(n-2)

Moreover, K„ has the following properties:

d

fs+2f3-<
16

l5rnhï("',,~2-("-2)f',-2)   íT/1^2,4.

dt
Kn(t,s)<0   fort,s£[0,R],

^(R,s) = l(^y-l(l-^)2)    for S £[0, R].

The detailed verification of this lemma is left to the reader.
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Lemma 2.2. Let u £ C4([0, R]) be such that A2u > 0 on [0,R), u(R) =

u'(R) = 0. Then u' < 0 on (0, R) and (Au)' > 0 on (0, R]. Furthermore,
(Au)(0) < 0 and (Au)(R) = u"(R) > 0.

Proof. Using Lemma 2.1 we deduce that u > 0 on [0, R). If Au > 0 in
[0, R], since u(R) = 0, the maximum principle gives a contradiction. Now, if

Au < 0 in [0, R], since u(R) - u'(R) - 0, the Hopf boundary lemma implies

that u = 0 in [0, R] and we again reach a contradiction. Since

/"-'(AtO'ÍO = / sn~l(A2u)(s)ds > 0   for t £ (0, i?],
./o

we conclude that (Aw)(0) < 0 and (Au)(R) = u"(R) > 0. Then, the fact that
u' < 0 on (0, R) follows easily from the maximum principle.

The next lemma is an immediate consequence of Lemma 2.1.

Lemma 2.3. Let g £ C([0, R]) be such that g > 0 and g ^ 0. Then the
function

iR
h(t)= /   K„(t,s)g(s)ds,       0<t<R,

Jo

is such that h(t) > C(R - t)2 for 0 < t < R, where C > 0 is a constant.

The Green's function of the operator -A for the Dirichlet problem in [0, R)
is given by G„(t, s) = RH„(^ , ^), where

(l-s, 0<t<s<l,

Hlit>S) = \l-t, 0<s<t<l,

„.      .      f-slns,       0<t<s<l,

H2{t'S) = \-slnt,       0<s<t<l,

and

r -V(i -s"-2), o < í < í < i,

0<s < t < 1,

if n > 3.
We easily prove the following lemma.

Lemma 2.4. Let g £ C([0, R]) be such that g > 0 and g £ 0. TAevz the
function

h(t)= /   G„(t, s)g(s)ds,       0<t<R,
Jo

is such that h(t) > C(R - t) for 0 < t < R, where C > 0 is a constant.

3. Proof of the theorems

Proof of Theorem 1.1. (i) Let u £ C*(BR) be a nontrivial radial solution of

(1.1). Define v(|x|) = u(x) for x £ BR. Using Lemma 2.1 we deduce that

y > 0 on [0, R). ByLemma 2.2 we have y' < 0 on (0, R) and (Ay)' > 0 on
(0, R]. Let v £ C4(BR) be another nontrivial radial solution of (1.1). Define

z(\x\) = v(x) for x £ B~R. Then z > 0 on [0, R), z' < 0 on (0, R), and
(Az)'>0 on (0.Ä].
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Let A4/^-1) = y(0)/z(0), and define the function

w(t) = X4^~l)z(Xt)   fort£[0,R/X].

Clearly we have
(A2w = wp   in[0,R/X),

{ w(R/X) = w'(R/X) = 0

and

(3.1) y(0) = w(0).

We first prove that

(3.2) Ay(0) = Aw(0).

Suppose that Ay(0) < Aw(0). Define R(X) = min(R, R/X). If there exists
a £ (0, R(X)] such that A(y - w) < 0 on [0, a) and A(y - w)(a) = 0, then
the maximum principle and (3.1) imply that (y - w)(t) < 0 for t £ (0, a].

Therefore, A2(y - w) = yp - wp < 0 on (0, a] and the maximum principle

implies that A(y - w) > A(y - w)(a) = 0 on [0, a), a contradiction. Thus

A(y - w) < 0 on [0, R(X)]. Then, as before, we show that (y - w)(t) < 0 for

t£ (0,R(X)]. Since

fy(R/X)   if A> 1,

(y-w)(R(X)) = I 0 if A= 1,

l -iü(ä)   if A < 1,
we deduce that necessarily X < 1. Now the Hopf boundary lemma implies that
(y - w)'(R) < 0. Since (y - tü)'(Ä) = -w'(R) = -X^+3^~lh'(XR), we again

obtain a contradiction. The case Ay(0) > Aiu(0) can be handled in the same

way. Thus (3.2) is proved.
Now we define the functions Y , W, and F by

Y(t) = (y(t),Ay(t))   forie[0,A],

W(t) = (w(t), Aw(t))   fort£[0,R/X],

and
F(s, t) = (t,sp)   fors>0,i€R.

Using (3.1), (3.2), and the fact that y'(0) = w'(0) = y'"(0) = w'"(0) - 0 we
easily obtain

Y(t) - W(t) = j^2^ (l-(^)n~2y(F(Y(s))-F(W(s)))ds   when n > 3,

Y(t)-W(t)= ( sln(-\(F(Y(s))-F(W(s)))ds   when« = 2,

Y(t) - W(t) = [ (t- s)(F(Y(s)) - F(W(s))) ds   when n = 1
./o

for t £ [0, R(X)]. When p > 1, F is locally Lipschitz continuous, and using

Gronwall's lemma we obtain Y = W on [0, R(X)]. When 0 < p < 1 let
a £ (0, Ä(A)) be fixed. Then y(0) > y(s) > y(a) > 0 and w(0) = y(0) >
ty(i) > w(a) > 0 for 5 € [0, a]. Since F is locally Lipschitz continuous on

(0, +00) x R, as before we obtain Y = W on [0, a]. By continuity we get
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Y = W on [0, R(X)]. Now we deduce that X = 1 and thus y = z on [0, R].
The proof of (i) is complete.

(ii) Let u £ C4([-R, R]) be a nontrivial solution of (1.1). By Theorem 1.1
in [2] we know that u is symmetric about the origin, u' < 0 on (0, R), and

u'" > 0 on (0, R]. Then the proof is the same as in (i).

Proof of Theorem 1.2. Let u £ C4(BR) be a nontrivial solution of (1.2). Using
the maximum principle we easily get u > 0 on BR and Au < 0 on BR.
Then it is well known (see Troy [5]) that u is radially symmetric and that if

y(\x\) = u(x), we have y' < 0 on (0,R) and (Ay)' > 0 on (0,1?). Let
v £ C4(BR) be another nontrivial solution of (1.2). Then v > 0 on BR,

Av < 0 on BR , v is radially symmetric, and if z(\x\) = v(x), we have z' < 0
on (0, R) and (Az)' > 0 on (0, R).

Let A4/^-') = y(0)/z(0), and define the function

w(t) = X4l{P~xh(Xt)   fori€[0,A/A].

Clearly we have
(A2w = wp   in[0,R/X),

{ w(R/X) = w"(R/X) = 0,

and

(3.3) y(0) = w(0).

We first prove that

(3.4) Ay(0) = Aw(0).

Suppose that Ay(0) < Aw(0). If there exists a £ (0,R(X)] such that
A(y - w) < 0 on [0, a) and A(y - w)(a) = 0, then the maximum princi-

ple and (3.3) imply that (y - w)(t) < 0 for t e (0, a]. Therefore, A2(y - w) =
yp - wp < 0 on (0, a] and the maximum principle implies that A(y - w) >
A(y - w)(a) = 0 on [0, a), a contradiction. Thus A(y - w) < 0 on [0, R(X)].

Since
( Ay(R/X)   if A > 1,

A(y - w)(R(X)) = •! 0 if X= 1,

I -Aw(R)   if X< 1,
we deduce that necessarily X > 1. Now as before, we show that (y - w)(t) < 0

for re (0,i?(A)]. Since

( y(R/X)   if A > 1,

(y - w)(J?(A)) = < 0 if A = 1,

I -•»;(/?)   if A < 1,
we deduce that necessarily X < 1 and obtain a contradiction. The case Ay(0) >
Aw(0) can be handled in the same way. Thus (3.4) is proved. Then we conclude

as in the proof of Theorem 1.1.

4. Existence results when 0 < p < 1

We consider the more general problems

,   u (A2u = f(u)   inBR,

[    ' U = § = 0   ondBR
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and

(4 2) (*u = f(u)A2m = f(u)   in BR,

on dBR,

where /: R —► R is a continuous function satisfying the following hypotheses:

(H()   /(0) = 0, f(u) > 0 for u > 0 and / is nondecreasing on [0, -f-oc).

(H2)   lim„_0+ f(u)/u = -(-oc and limu_+00 f(u)/u = 0.

Theorem 4.1. Problem (4.1) (resp. (4.2)) has at least one positive radial solution

u £ C4(BR).

Proof. Since we are interested in positive radial solutions, the problems under

consideration reduce to the one-dimensional boundary value problems

,4n (A2u = f(u)   in[0,R),
[ '   ' I u(R) = u'(R) = 0

and

(42l) (A2u = f(u)   in[0,R),

( '   ' \ u(R) = u"(R) = 0.

We first consider problem (4.1'). By Lemma 2.3 there exists C > 0 such

that
r*
I   K„(t,s)(R-s)2ds>C(R-t)2   forO<t<R.

Jo

Let M > 0 be such that MC > 1. By (H2) there exist p > n > 0 such that

f(u) > Mu for 0 < m < n and f(u) J0 K„(0, s)ds < u for u > p. Choose

a, b > 0 in such a way that aR2 < n < p < b. Now let

Z = {u£ C([0, R]) ; a(R - t)2 < u(t) < b for 0 < t < R} .

Clearly, Z is a bounded closed convex subset of the Banach space C([0, R])

endowed with the sup norm. Define

r«(i)= /  Kn(t,s)f(u(s))ds
Jo

for t £ [0, R] and u£ Z . Using (H[) and Lemma 2.1 it is easily verified that

T is a compact operator mapping Z into itself, and so there exists u £ Z such

that u - Tu by the Schauder fixed-point theorem. Clearly u £ C4([0, R]) and

w is a solution of (4.1').
Now we consider problem (4.2'). By Lemma 2.4 there exists C > 0 such

that

f  G„(t,s)(R-s)ds>C(R-t)   forO<t<R.
Jo

Let M > 0 be such that MC2 > 1 . By (H2) there exist p > n > 0 such that

f(u) > Mu for 0 < u < n and f(u)(j* G„(Q, s) ds)2 < u for u > p. Choose

a, b > 0 in such a way that aR<n < p <b . Now let

W = {u £ C([0, R]) ; a(R - t) < u(t) < b for 0 < t < R} .
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Clearly, W is a. bounded closed convex subset of the Banach space C([0, R])

endowed with the sup norm. Define

Suit) = jR G„(t, s) (jR Gn(s, r)f(u(r)) dr\ ds

for t £ [0, R] and u £ IV. Using (Hi) and the well-known properties of Gn

it is easily verified that S is a compact operator mapping W into itself, and
so there exists u £ W such that u = Su by the Schauder fixed-point theorem.

Clearly u £ C4([0, R]) and u is a solution of (4.2').
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