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ON UNIONS AND INTERSECTIONS OF SETS OF SYNTHESIS

T. K. MURALEEDHARAN AND K. PARTHASARATHY

(Communicated by J. Marshall Ash)

Abstract. Local techniques introduced by Saeki and Stegeman are employed

to give conditions for unions and finite intersections of 5-sets to be 5-sets.

Using local techniques we study unions and intersections of sets of spectral

synthesis (5-sets). Beyond the well-known fact that the intersection of two
S-sets need not be an S-set, there appears to be no known result about intersec-

tions. It is not known whether the union of two 5-sets is an S-set, but there are

some partial results (e.g., Saeki [2] and Warner [6]). We give simple sufficient

conditions for finite intersections and (possibly infinite) unions of S-sets to be

5-sets.
We generally follow the notation and terminology of Stegeman [4]. A(G)

denotes the Fourier algebra of a locally compact abelian group G. Suppose

x £ G, f, g £ A(G), and /, J are ideals in A(G). We write

(i) f -x g if / and g agree in some neighbourhood of x ;

(ii) / £x I if / =x g for some g £ I ;

(Hi) ICXJ if / £x J for every / £ I ;

(iv) I =x J if I cx J and J cx I.

For a closed subset E of G, 1(E) and J(E) denote the largest and smallest

closed ideals, respectively, with hull E. A(E) ("the difference spectrum of E "
[3]) is the set of points of nonsynthesis of E,

A(E) = {x € G:I(E) ¿x J(E)}.,

so that E is an S-set if and only if A(E) is empty. A(E) is a subset of dE, the
boundary of E. It was used by Saeki [2] and was later systematically exploited

in [4], with different notations. We also make frequent use of the following

result proved by Stegeman [4].

Theorem A (Stegeman). If E is a closed subset of G such that A(E) c C c E
for some C-set C, then E is an S-set.

The basic idea of our approach is to get suitable relations between the differ-
ence spectra of the sets involved and their unions and intersections.
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1. Lemma. Let Ex, E2 be closed subsets of G. Then

(i)   A(Ex n E2) C A(EX ) U A(E2) U(dExndE2),

(ii)   A(EX ) U A(E2) C A(EX U £2) U (Ex n E2).

Proof. Let x £ A(EX n E2) c d(Ex n E2). Suppose x £ dEx n dE2. Since
d(Ex n £2) C d£i U dE2 , as is easily checked, we have x £ dEx or x £ dE2,

but not both. We prove that x e A(£,) if x £ dE¡, / = 1, 2.
Suppose x £ dEx. Now x $ dE2 and x £ E2 imply that there is a

neighbourhood V of x with F c E2. Choose k £ A(G) with k - I in
a neighbourhood of x and suppfc c V. Since x £ A(EX n £2), there is an

/ e I(EX n £2) such that / £ x J(EX n E2). Then /fc e I (Ex). If x £ A(£0 ,
then /& e* J(Ex), so f =x fk £ J(Ex) c /(£i n £2), a contradiction.

Thus x £ dEx implies x £ A(Ex). Similarly, if x £ dE2, then x e A(E2)
and (i) is proved.

The proof of (ii) is similar but simpler: one proves that if x e A(E{ ) and

x $ E2 , then x £ A(Ex U E2).

Our first application of Lemma 1 is the following result on intersections. It

shows, for instance, that an annulus is an S-set.

2. Theorem. Let Ex, E2 be S-sets. If there is a C-set C such that dEx (~)dE2 c
C c Ex DE2, then Ex n E2 is an S-set. In particular, the conclusion holds if

dEx DdE2 = 0.

Proof. By (i) of Lemma 1

A(Ex n E2) C dEx n dE2 c C c Ex n E2,

so the assertion is a consequence of Theorem A.

3. Remark. If EX,E2, £3 are S-sets with dEx n diî^ n dE$ = 0, it is not

necessary that Ex n E2 n E3 is an S-set. Take, for example, Ex = G - R3,
E2 — the closed unit ball, and £3 = the complement of the open unit ball. For a
finite collection {£,} of S-sets, the correct version is that if dE¡ndEj — 0 for
11 jí j, then f) Et is an S-set. This again is no longer true for infinite collections:

take Ex = the closed unit ball in R3 and E„ = {x £ R3 : ||jc|| > 1 - ¿} , n > 1.
We now come to results on unions. We first mention the following result of

Saeki [2].

4. Theorem (Saeki). If Ex, E2 are S-sets and if there is a C-set C such that

d(Ex)nd(E2)f)d(ExöE2)c C C Ex U E2 ,

then Ex u E2 is an S-set.

5. Remark. Theorem 4 is also stated as one part of Theorem 4' in Warner [6],

the other part being a converse, namely, if Ex U E2 is an S-set and if there is

a C-set C satisfying the condition mentioned in Theorem 4, then Ex and £2
are S-sets. However, it is easy to see that this converse statement is false. Just

take Ex = S2 and £2 = any closed convex set (e.g., a ball) in R3 containing

E\ in its interior; then dEx C\dE2 = 0, Exli E2 - E2 is an S-set, but Ex is
not an S-set. The same example shows also that Warner's Lemma 3' [6] is not

true. We, however, have the following 'if and only if result.
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6. Theorem. Let Ex, E2 be closed subsets of G. Suppose there are C-sets

Cx, C2 such that

dEx n £2 c Ci c £1,       £1 n <9£2 c C2 c £2.

Then Ex u £2 is an S-set if and only if Ex and E2 are S-sets.

Proof. Since A(£,) c d£,, it follows from Lemma l(ii) that A(£i) c
A(£] U £2) U (dEx n £2) and similarly for £2. Theorem A now gives one

half of the result, while the other half is a consequence of Theorem 4 (recalling

that the union of two C-sets is a C-set).

It is well known that a closed countable union of C-sets is a C-set. Here is

a result for infinite unions of S-sets.

7. Lemma. Let {£,} be a collection of mutually disjoint closed sets in G. Sup-

pose that, for each j, \Jt.¡ £, ¿s closed. Then

(i)  A(U£,)cUA(£,),
(ii)  A(Ej)cA([JEi) for each j.

Proof. Let x £ A(|J£,) • Then x £ Ej for a unique ; . We prove x £ A(Ej).

Choose a neighbourhood V of x such that Fn(U(y; £,) = 0, and then choose

a k £ A(G) such that k = 1 near x and k - 0 off V. Since jc € A((J£,),
there is an / £ I([JEj) with / ix J(\JE¡) •

Assume x £ A(£;). Then there is a g £ J(E¡) with f =x g. But gk £
J(\JEj), so that / -x fk =x gk £ /((J£,), a contradiction. Hence (i) is
proved. The proof of (ii) does not need any new ideas, and we omit it.

8. Theorem. Let {£,} be a collection of mutually disjoint closed sets in G

satisfying the condition that (jijtj £, is closed for each j. Then (J £¡ is an

S-set if and only if each £, is an S-set.

Proof. Immediate from Lemma 7.

Using the fact that a closed set which is a countable union of C-sets is a
C-set, arguments similar to the above give the following result.

9. Theorem. Let {£,} be a collection of closed subsets of G satisfying the

following conditions:

(a) £, n Ej■ = 0, i ^ j, except for countably many i, j.

(b) Ei n Ej is a C-set for all i, j, i ^ j.
(c) Uijtj Ei is closed for each j.

(d) \Jij,¥j(EiriEj) is closed.

Then (J£, is an S-set if and only if each £, is an S-set.

10. Corollary. Let {£,} be a collection of S-sets in G satisfying (a), (b) and

(d) of Theorem 9. In place of (c), suppose that C = UjíUiyy E¡\ U;v; E¡} is a

C-set. Then |J £, is an S-set.

Proof. Fi = £, U C are S-sets satisfying the conditions of Theorem 9 and

11. Remark. It is easy to construct examples of S-sets using our results, e.g.,

the Hawaiian ear ring in R2 [5, pp. 111-112]. Lemma 4.3.7 of [1], which says
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that ((J En) U {0} is an S-set in R, where each E„ c (-¡¡^ , ¿) is an S-set, can

also be deduced from the results given above.
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