DARBOUX'S LEMMA ONCE MORE

HANS SAMELSON
(Communicated by Christopher Croke)

Abstract

Darboux's lemma states that a closed nondegenerate two-form $\boldsymbol{\Omega}$, defined on an open set in $\mathbb{R}^{2 n}$ (or in a $2 n$-dimensional manifold), can locally be given the form $\sum d q_{i} \wedge d p_{i}$, in suitable coordinates, traditionally denoted by $q_{1}, q_{2}, \ldots, q_{n}, p_{1}, p_{2}, \ldots, p_{n}$. There is an elegant proof by J. Moser and A. Weinstein. The author has presented a proof that was extracted from Carathéodory's book on Calculus of Variations. Carathéodory works with a (local) "integral" of Ω, that is, with a one-form α satisfying $d \alpha=\Omega$. It turns out that the proof becomes much more transparent if one works with Ω itself.

As in [3] we start by writing Ω (locally) as $\sum_{1}^{N} d f_{i} \wedge d g_{i}$, with some functions $f_{1}, f_{2}, \ldots, f_{N}, g_{1}, g_{2}, \ldots, g_{N}$, and with $N \geq n$ of course. (For this step we take an integral α of Ω and write it as $\sum_{1}^{N} f_{i} d g_{i}$.) We now try to reduce N, if it is larger than n.

Since Ω^{n} is not 0 , some n of the terms in the sum for Ω must have nonzero exterior product; the corresponding f 's and g 's can then be taken as coordinates $u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}$ and we can write $\Omega \sum_{1}^{n} d u_{i} \wedge$ $v_{i}+\sum_{n+1}^{N} d f_{j} \wedge d g_{j}$. To this situation we apply a standard classical and basic proposition of Hamiltonian transformation theory [5].

Let ω be a closed nondegenerate two-form on an open set in a manifold $M^{2 n}$ (with local coordinates x_{i} when needed), and let H be a "time-dependent Hamiltonian", i.e., a function $H(x, t)$ on $M \times \mathbb{R}$ (or on a suitable open subset thereof). Write ω_{H} for the two-form $\omega-d H \wedge d t$ (here ω has been pulled back to $M \times \mathbb{R}$ and t is the standard coordinate on \mathbb{R}).
Proposition. There exists a (local) diffeomorphism F of $M \times \mathbb{R}$ "over \mathbb{R} ", i.e., of the form $x^{\prime}=F(x, t), t^{\prime}=t$ (or, briefly, of the form $x^{\prime}=F(x, t)$) with inverse $x=G\left(x^{\prime}, t\right)$ such that

$$
F^{*} \omega_{H}=\omega \quad\left(\text { and } G^{*} \omega=\omega_{H}\right)
$$

One says that " H has been reduced to 0 by F ". As a matter of fact, F is simply the expression for the solutions of the associated "canonical equations" in terms of the initial values for $t=0$. The proof is a simple computation; we bring it, for completeness, at the end.

Received by the editors July 28, 1993.
1991 Mathematics Subject Classification. Primary 53C15; 58A10; 70H15.
Key words and phrases. Canonical coordinates, Hamiltonian transformation theory.
Support by NSF DMS 91-02078 is acknowledged.

We apply the proposition to Ω above by using $\sum d u_{i} \wedge d v_{i}$ as ω and $-f_{N}$ as H. Thus we have functions $u_{i}^{\prime}=\phi_{i}\left(u_{j}, v_{j}, t\right), v_{i}^{\prime}=\psi_{i}\left(u_{j}, v_{j}, t\right)$ such that the equation

$$
\sum d u_{i} \wedge d v_{i}+d f_{N} \wedge d t=\sum d \phi_{i} \wedge d \psi_{i}
$$

holds identically in $\left(u_{j}, v_{j}, t\right)$. We now substitute the function g_{N}, from the expression for Ω, for t in this equation (i.e., we take the pullback of the equation under the embedding of M into $M \times \mathbb{R}$ via $x \mapsto\left(x, g_{N}(x)\right)$. Thus $\sum d u_{i} \wedge d v_{i}+d f_{N} \wedge d g_{N}$ equals $\sum d \Phi_{i} \wedge d \Psi_{i}$, where $\Phi_{i}\left(u_{j}, v_{j}\right)$ means $\phi_{i}\left(u_{j}, v_{j}, g_{N}\left(u_{j}, v_{j}\right)\right)$ and similarly for Ψ_{i}. So $\Omega=\sum d u_{i} \wedge d v_{i}+\sum_{n+1}^{N} d f_{j} \wedge$. $d g_{j}$ equals $\sum_{1}^{n} d \Phi_{i} \wedge d \Psi_{i}+\sum_{n+1}^{N-1} d f_{j} \wedge d g_{j}$, and so the number of terms in the expression for Ω has been reduced by 1. Darboux's lemma follows by iteration.

Now we prove the proposition. We express the usual canonical differential equations of Hamiltonian theory in the language of exterior forms: A vector field \tilde{X} on $M \times \mathbb{R}$ (or on an open subset thereof) will be called Hamiltonian (to H) if
(a) it is of the form $\left(X, \partial_{t}\right)$, where ∂_{t} is the standard vector field \mathbb{R} (thus $\left.\partial_{t} f=f^{\prime}\right)$ and where X at any point (x, t) is tangent to $M \times t$, so that X is a "time-dependent vector field" on M; and
(b) the substitution operator $i_{\tilde{X}}$ nullifies the form $\omega_{H}=\omega-d H \wedge d t$.
(For any vector field Y the operator i_{Y} operates on an exterior form π by substituting Y into the first slot to π. It is characterized by three properties: (1) it nullifies functions (i.e., 0 -forms); (2) one has $i_{Y} d h=d h(Y)=Y . h$ for any function h; (3) it is a (graded) derivation: $i_{Y}(\lambda \wedge \mu)=i_{Y} \lambda \wedge \mu+(-1)^{\operatorname{deg} \lambda} \lambda \wedge i_{Y} \mu$.)

We split the differential $d H$ into its M - and \mathbb{R}-components (defined by restriction to the M - or \mathbb{R}-factor at (x, t)); we write this as $d H=d_{M} H+H_{t} d t$. The Hamiltonian condition $i_{\tilde{X}} \omega_{H}=0$, i.e., $i_{\tilde{X}} \omega=\left(i_{\tilde{X}} d H\right) d t-d H$, means then $i_{X} \omega=-d_{M} H$ and $i_{\widetilde{X}} d H(=\widetilde{X} . H)=H_{t}$; the second relation can also be written as $X . H=0$ or $d_{M} H(X)=0$ and is a consequence of the first, since ω is skewsymmetric, and so $-d_{M} H(X)=i_{X} \omega(X)=\omega(X, X)=0$. Since ω is nondegenerate, the relation $i_{X} \omega=-d_{M} H$ shows that the Hamiltonian field \widetilde{X} exists and is unique. For the case $\omega=\sum d p_{i} \wedge d q_{i}$ the relation $i_{X} \omega=-d_{M} H$ amounts to the canonical equations $\dot{q}_{i}=H_{p_{i}}, \dot{p}_{i}=-H_{q_{i}}$.

We now construct the map F of the proposition: as noted after the proposition, it simply sends each line $x \times \mathbb{R}$ to the trajectory of \widetilde{X} through $(x, 0)$. (In particular, we have $x=F(x, 0)$.) This is a diffeomorphism by standard theorems about ordinary differential equations. Clearly the vector fields ∂_{t} on $M \times \mathbb{R}$ map to \tilde{X} under F. It follows that $i_{\partial_{t}}$ nullifies $F^{*} \omega_{H}$.

We write $F^{*} \omega_{H}$ as $\omega_{0}+\beta \wedge d t$, where ω_{0} and β are nullified by ∂_{t}, i.e., do not involve any $d t$. The relation $i_{\partial_{t}} F^{*} \omega_{H}=0$ then says $\beta=0$; so we have $F^{*} \omega_{H}=\omega_{0}$. Since ω_{H} is closed, so is ω_{0}; the equation $d \omega_{0}=0$ implies that the t-derivatives of the coefficients $a_{i j}$ of $\omega_{0}=\sum a_{i j} d x_{i} \wedge d x_{j}$ vanish and that the form ω_{0} does not depend on t (for this the domain of definition should be convex in the t-direction and connected). Thus $F^{*} \omega_{H}$ is simply a two-form on M, pulled back to $M \times \mathbb{R}$; and finally, since the map F is the identity on the slice $t=0, F^{*} \omega_{H}$ equals ω.

References

1. C. Carathéodory, Variartionsrechnung und partielle Differentialgleichungen erster Ordnung, Teubner, Leipzig, 1935, p. 124; English transl., Calculus of variations and partial differential equations of first order, Holden-Day, San Francisco, 1965, p. 125.
2. J. Moser, On the volume elements of a manifold, Trans. Amer. Math. Soc. 120 (1965), 286-294.
3. H. Samelson, On Darboux's lemma, Proc. Amer. Math. Soc. 70 (1978), 126-128.
4. A. Weinstein, Symplectic structures on Banach manifolds, Bull. Amer. Math. Soc. 75 (1969), 1040-1041.
5. E. T. Whittaker, A treatise on the analytical dynamics of particles and rigid bodies, Dover, New York, 1944, p. 317.

Department of Mathematics, Stanford University, Stanford, California 94305
E-mail address: samelson@gauss.stanford.edu

