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DARBOUX'S LEMMA ONCE MORE

HANS SAMELSON

(Communicated by Christopher Croke)

Abstract. Darboux's lemma states that a closed nondegenerate two-form Q,

defined on an open set in R2n (or in a 2n-dimensional manifold), can locally

be given the form X) ¿Qi A ¿Pi > m suitable coordinates, traditionally denoted

by 9\, Qi, ■■■, 9n , P\,Pi, ■■■ ,Pn ■ There is an elegant proof by J. Moser
and A. Weinstein. The author has presented a proof that was extracted from

Caratheodory's book on Calculus of Variations. Carathéodory works with a

(local) "integral" of fi, that is, with a one-form a satisfying da = fi. It turns

out that the proof becomes much more transparent if one works with fi itself.

As in [3] we start by writing fi (locally) as Ya dfi/\dgi, with some functions

fi, h, ■■■ , fN, gi, gi, • • • , gN, and with N > n of course. (For this step we

take an integral a of fi and write it as Ya fidgi ■) We now try to reduce N,
if it is larger than n .

Since fi" is not 0, some n of the terms in the sum for fi must have

nonzero exterior product; the corresponding /'s and #'s can then be taken
as coordinates «i, u2,..., un, Vx, v2,..., vn and we can write fi £1 du¡ A

v¡ + Y,n+i dfj A dgj. To this situation we apply a standard classical and basic
proposition of Hamiltonian transformation theory [5].

Let to be a closed nondegenerate two-form on an open set in a manifold
M2n (with local coordinates x, when needed), and let H be a "time-dependent

Hamiltonian", i.e., a function H(x, t) on M x R (or on a suitable open subset
thereof). Write coh for the two-form co - dH A dt (here co has been pulled
back to M x R and t is the standard coordinate on R).

Proposition. There exists a (local) diffeomorphism F of M xR "over R", i.e.,

of the form x' = F(x, t), t' = t (or, briefly, of the form x' = F(x, t)) with
inverse x = G(x', t) such that

F*coh = co   (and G*co = coh) ■

One says that " H has been reduced to 0 by F ". As a matter of fact, F is
simply the expression for the solutions of the associated "canonical equations"
in terms of the initial values for t = 0. The proof is a simple computation; we
bring it, for completeness, at the end.
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We apply the proposition to fi above by using ¿^ du¡ A dv¡ as co and -fa
as H. Thus we have functions u\ = 4>í(uj , Vj, t), v¡ = y/¡(uj > vj > 0 such that

the equation

^2 dut A dvj + dfN Adt = ^2 d(f>i A dy/¡

holds identically in (u¡, v¡, t). We now substitute the function gN , from

the expression for fi, for / in this equation (i.e., we take the pullback of

the equation under the embedding of M into M x R via x h-> (x, gN(x)).

Thus Y,du¡ A dv¡ + dfN A dgN equals £ rf^i A d*¥i, where 0,(w;, Vj) means

<£••(«,•, u,, gN(uj, vj)) and similarly for ¥.. So fi = £ du¡ A dv¡ + £^+1 dfj A

dg, equals ¿3" ^i A d*¥¡ + Yn+\l dfj A dg¡ , and so the number of terms in

the expression for fi has been reduced by 1. Darboux's lemma follows by

iteration.   D

Now we prove the proposition. We express the usual canonical differential

equations of Hamiltonian theory in the language of exterior forms: A vector

field X on M x R (or on an open subset thereof) will be called Hamiltonian

(to H) if
(a) it is of the form (X, dt), where dt is the standard vector field R (thus

dtf = f) and where X at any point (x, r) is tangent to M x t, so that X is

a "time-dependent vector field" on M ; and

(b) the substitution operator i~ nullifies the form coh - to- dH Adt.

(For any vector field Y the operator iY operates on an exterior form n by
substituting Y into the first slot to n . It is characterized by three properties:
(1) it nullifies functions (i.e., 0-forms); (2) one has iYdh = dh(Y) = Y.h for any

function h ; (3) it is a (graded) derivation: iY(ÀAp) = iYÀAp+(-l)de6ÀA.AiYp .)

We split the differential dH into its M- and R-components (defined by

restriction to the M- or R-factor at (x, t)) ; we write this as dH = dMH+Htdt.
The Hamiltonian condition i~co¡i = 0, i.e., i~co = (i~dH)dt - dH, means

then ixco = -d^H and i~dH(= X.H) = Ht ; the second relation can also be

written as X.H = 0 or dMH(X) = 0 and is a consequence of the first, since co

is skewsymmetric, and so -dniH(X) = ixco(X) = co(X, X) = 0. Since co is

nondegenerate, the relation ixco = -d\¡H shows that the Hamiltonian field X

exists and is unique. For the case co = YdPi A dq¡ the relation ixco = -di^H

amounts to the canonical equations q¡ = Hp¡, p¡ = -Hq..

We now construct the map F of the proposition: as noted after the propo-

sition, it simply sends each line x x R to the trajectory of X through (x, 0).
(In particular, we have x = F(x ,0).) This is a diffeomorphism by standard

theorems about ordinary differential equations. Clearly the vector fields dt on

M x R map to X under F . It follows that i a, nullifies F*coh ■
We write F*coh as coo + ß A dt, where coo and ß are nullified by dt, i.e.,

do not involve any dt. The relation í9íF*coh = 0 then says ß = 0 ; so we have

F'coh = too • Since coh is closed, so is coo ; the equation dcoo = 0 implies that
the i-derivatives of the coefficients ai; of co0 = YaijdXiAdXj vanish and that

the form coo does not depend on t (for this the domain of definition should

be convex in the r-direction and connected). Thus F*coh is simply a two-form

on M, pulled back to M x R ; and finally, since the map F is the identity on

the slice t = 0, F*con equals co.   ü
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