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Abstract. Recent results of Hanlon, Stanley, and Stembridge give the expected
values of certain functions of matrices of normal variables in the real and com-

plex cases. They point out that in both cases the results are equivalent to combi-

natorial results and suggest further that these results may have purely combina-

torial proofs, in this way avoiding the use of the theory of spherical functions.

Such proofs are given in this paper. In the complex case we use the familiar cy-

cle decomposition for permutations. In the real case we introduce an analogous

decomposition into cyclically ordered sequences, called chains, which makes the

real and complex cases strikingly similar.

1. INTRODUCTION

If X! + ••• + Xn — k for nonnegative integers Xx > ■ ■■ > Xn > 0, then

X = (Xx, ... , Xn) is a partition of k and we write XV- k . Let a — (ax, a2, ... )

and b = (b\, b2, :..) where ax,ü2, ... and bx, b2, ... are indeterminates.

Let pk(a) — J2j>\ ahj ■> k ^ 1 > a power sum symmetric function, and Px(à) =

PkM)' "Pk„(a) • We also use Px(A), where Px¿(A) denotes trace(AA/) for a

square matrix A.
Hanlon, Stanley, and Stembridge [2, Theorem 2.3] prove that, for X \- k ,

(1) ru(/7A(AUBU*)) =  £ clvPll(a)pv(b),
H,v\-k

where the expectation is over nxn matrices U whose entries are independent
standard normal random complex variables and A, B are fixed, but arbitrary,

Hermitian complex matrices. On the right-hand side, ax, ..., an,bx, ... ,bn
are the eigenvalues of A, B with the remaining a 's, b 's set equal to zero and

c¿ „ is the connection coefficient for the class algebra in C<Ôk , the group algebra

of the symmetric group <£>k on k symbols.
The main result of [2] (Theorem 3.5) is the analogue of the above result in

the real case and states that, for X Y- k,

(2) gbto(AUBUr)) = j^- J] 4ivPlt(a)pv(b),
li.vhk
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where the expectation is over nxn matrices U whose elements are independent

standard normal random real variables and A, B are fixed, but arbitrary, real

symmetric matrices. In this case, d^u is the connection coefficient for the

Hecke algebra of the Gel'fand pair (<82k , 3§k), where 38k is the hyperoctahedral
group.

The proofs given in [2] use the theory of spherical functions. However, alter-

native evaluations of these expected values (the left-hand sides) as combinatorial

sums are also given there, leading those authors to suggest that (1) and (2) may

have purely combinatorial proofs.

The following definitions are needed in the description of these sums, which

are given below as (3) and (4). Let Wk be the set of all words of length 2k

in the elements of a and b, starting with an element of a and alternating

thereafter between b and a (so that they end with an element of b). For a

partition X, let Wx^'WXx x-.-xWXn. For w = (wx, ... , wn) £ Wx, let y/(w)

be the commutative image of w (so it is a product of all the a¡ 's and bj's in

wx, ... ,wn). Let m¡j(w) be the number of times a¡bj appears consecutively

as a subword among wx, ... ,wn , and let m\ j(w) be the number of times bjü¡

appears consecutively as a subword among wx, ... ,wn, with the convention

that the last letter of each w¡ is followed by its first letter (so from this point

of view the w¡ are circular words).

Let Wx' consist of the words w £"W¡ such that m¡j(w) = m'ij(w) for all

i, j > 1. Let Wx" consist of the words w £ W¡ suchthat mij(w) + m'ij(w) =

t]ij(w) is even for all i, j > 1.
The alternative evaluation [2, Proposition 6.2] of the left-hand side of (1) is

(3) ]T w(w) I] m,,j{w)\
w€W/ i,j>\

for which the only integration required is W(urus) = r\ôr,s, where u is a stan-

dard normal complex variable. Similarly, the alternative evaluation [2, Propo-
sition 6.2] of the left-hand side of (2) is

(4) £   V(w) Y[(rn,jiw)-1)\\
wçWx" i,j>l

for which the only integration required is %(u2r) = (2r - 1)!!, where (2r - 1) !!

denotes (2r)\/2rr\, and where u is a standard normal real variable.

Hanlon, Stanley, and Stembridge's [2] suggestion is that combinatorial proofs
(avoiding spherical functions) of (1) and (2) would be obtained if we could

establish combinatorially that (3) is equal to the right-hand side of (1) in the
complex case and that (4) is equal to the right-hand side of (2) in the real case,
for sets of indeterminates a and b .

Such a combinatorial proof is given in [2] for the complex case with single-
part partitions. In this paper, we provide combinatorial proofs for general X in

the complex and real cases.

The result for the complex case is given in Theorem 2.1 and, for the real
case, in Theorem 3.1. These theorems are shown directly by combinatorial
constructions applied to two natural combinatorial structures associated with
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permutations. In the complex case, the structure is the familiar disjoint cycle

decomposition. In the real case we introduce a new object, called a chain, for

which there is an analogous disjoint decomposition. It is sufficient to work with

the representations of these structures as linearized circular sequences rather

than with the richer structure of faces of embeddings of graphs. The latter was
used in [1] for the determination of certain connection coefficients and then as

the basis for the proof of the complex single-part case cited above.

The proofs are presented in a parallel way to show their similarity at the com-

binatorial level. It is hoped that the constructions may find further application.
For further details on the background to the question addressed here, and

for details of the integration theory, the reader is referred to [2].

2. The complex case

For a permutation a £ <Sk, let x(a), called the cycle-type of a, be the
partition of k giving the lengths of the cycles in the disjoint cycle decomposition

of a. In this paper we adopt the convention that cycles are listed in weakly

decreasing order of lengths and, within those of the same length, in increasing

order of smallest element. The elements on each cycle are listed in the order

in which they appear around the cycle, with the smallest element first, and

enclosed in round brackets. Let Q be the sum in the group algebra of <S>k of
all permutations with cycle-type X, for X a partition of k . The C-span of the

Cft 's generates the class algebra of the group algebra.
We now give the combinatorial theorem of Hanlon, Stanley, and Stembridge

[2] arising from their expected value in the complex case. Their theorem has
been rewritten using the fact that the connection coefficients c¿ „ are given by

Ç-i&v — Z)ac¿,iv^a and that the C„ commute. Combinatorially, the connection

coefficient cxßv is the number of ways (ei, e2) in which an arbitrary element

with cycle-type X can be written as exe2, where ex has cycle-type p and e2

has cycle-type v . The proof is bijective, involving a construction on words in

W{ . A brief numerical example is carried along to illuminate certain points of
the exposition.

Theorem 2.1.

\fhk )   \fthk j        Xhk       w€^' i,j>\

Proof. First we give the left-hand side of the result a combinatorial interpre-

tation as follows. For p £ <8k , a cycle a-labeling a of p is a mapping from

the cycles in the disjoint cycle decomposition of p to the elements of a. In

such a mapping, we say that a cycle is a-labeled (or labeled where the context

permits) by the element of a to which it is mapped. Let wt(a) = \~[i>x a¡

where f is the total number of elements on cycles labeled a¡ in a. Then

clearly Y,a wt(a) = pT(P)(a), where the sum is over all cycle a-labelings a of

p, and thus
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This means that the left-hand side of the result is the generating function

(5) £   5>/>wt(/f)wt(a),
o.peS/t ß,a

where ß is summed over all cycle ¿»-labelings of a.

For the right-hand side, let ¿?(w) be the set of infinite-dimensional matrices
indexed by the positive integers, whose (i, »-entry is some permutation of

{I,... ,mij(w)}, for i,j > 1. Thus \3°(w)\ = ü, j>i >»/ j(w)!, so the
right-hand side of the result is the generating function

(6) J2 E yv(wW(w)\.
ye&k tier,;,

We now give a combinatorial proof of the result by comparing the generating
functions (5) and (6), and by considering each pair a, p £ <Sk. All we need,
for each cycle ¿»-labeling ß of a and cycle «-labeling a of p, is to construct

y £ <Ôk , w £ Wx'(y), and P e &(w) such that ap = y and wt(j8) wt(a) = y/(w)

and in such a way that this construction is reversible. The three quantities are
constructed as follows.

(i) For y : Compute the product op to obtain y.
(ii) For w : Let the cycles of y , in the order specified by the above conven-

tion, have lengths Xx, ... , X„ . For each j = I, ... , n , construct a word w; of

length 4Xj by concatenating Xj strings of length four where the /th such string
is

gadp(g)bh,

in which g is the /th element on the jth cycle of y, a¿ is the label of the

cycle containing g in a, and bh is the label of the cycle containing p(g) in

ß.
For example, with k = 10 and

o- = (128 5 103)(496)(7),     p = (1 5 2)(6 7 10)(39)(48),

let

/? = (128 5103)6l(4 96)è2(7)èl    and   a = (1 5 2)fl,(6 7 10)a3(3 9)û2(4 8)a2

where the subscript on a cycle is its label. Thus wt(/f) = b\b\ and wt(a) =

a\a\a\. Then y = (1 104 5 8 9)(3 67)(2), so we construct

ux — I ax 5bx lQai6b24a2Sbx 5ax2bxSa24b29a23bx,

u2 — 3a29b26a-}7bx7a-¡ 10bx,

«3 = 2ax 1 b\.

We obtain w - (wx, ... , wn) £ Wx by retaining in u = (ux, ... , u„) only

the a's and b's, in place. (Thus we immediately have wt(/?)wt(a) = y/(w).)

We now show that w is in Wx'. For i, j > 1, let @¡j be the set of elements
of {1, ... , k} on a cycle labeled a, in a and on a cycle labeled bj in ß . An

occurrence of a¡bj as a subword in some w¡ corresponds to an occurrence of

a¡tbj as a subword in u¡, where t £ 3>ij, so m¡j(w) = \3¡i,¡\. Similarly,

an occurrence of bja¡ as a subword in some w¡ corresponds to an occurrence
of bjta¡ as a subword in u¡, where t £ 2f¡j (where the u¡ are circular when

appropriate, to match the w¡), so m\ j(w) - \2¡Í!¡\. Thus, m¡j(w) = m'¡j(w)

for i, j > 1, so w £ Wx  with X = r(y).
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(iii) For P: Finally, we obtain P as the matrix of permutations whose (i,j)-

entry, i, j > 1, is the permuted order in which the elements of ^¡j appear

from left to right in the third positions (mod 4) in ux, followed by u2, ... , u„ .
Since \9>ij\ = m¡j(w) and each element of {I, ... , k} occurs exactly once in

the third positions (mod 4), then Pe^fti)) and the construction is complete.
To conclude the above example, we obtain

wx = ax bx Û3 b2 Ü2 bx ax bx ü2 ¿>2 a2 bx,

w2 = a2 b2 a-i bx a3 bx,

w3 = axbx,

{1,2,5}       0 0 •••] [321 0 0 •••■
{3,8} {4,9} 0 ••• 21 12 0 •••
{7, 10}       {6} 0 ••• and   P=     12 1 0 •••

0            0 0 • • • 0 0 0 • • •

where each entry of P is the second row of the two-line representation of the

corresponding permutation.
To reverse the construction, we start with y, w , P and proceed to determine

u. The second and fourth positions (mod 4) of u come immediately from w .

The first positions (mod 4) come immediately from the successive entries in the

cycles of y. We now find the 3>tj by analyzing substrings bjta¡ (which involve
only positions 1, 2, and 4 (mod 4)). The third positions (mod 4) now follow
by applying, for i, j > 1, the (i, »-entry of P to 3f¡j , thereby specifying, in

order, the entries between a¡ in the second positions (mod 4) and bj in the

fourth positions (mod 4). Clearly, u uniquely determines p, a, a, ß .   D

3. The real case

Let £/k = {{1,1}, ... , {k,k}}. In this section, we now use <S2k to denote

the symmetric group acting on {1, 1,..., k, k}, whose elements are ordered

by 1 -<î-<----<fc-<fc. For a £ <52k, a chain is an ordered list of an
even number of ordered pairs ((ix, jx) ■ ■ ■ (i2m , j2m)) such that js — a(is), s =

1, ... ,2m, with left-links {i2t-X, z'2/} G ̂  , and with right-links {J2t, 721+1} €
sfk, t = \, ... , m (where /2m+i = '1, so these are interpreted circularly) and

ix is the smallest of i\,..., i2m . The i 's are called the left-elements of the
chain and the /' 's are called the right-elements of the chain (thus, ix is the

smallest left-element on the chain). The length of a chain is the number of

ordered pairs it contains.
The permutation a is completely specified by its set of chains, which form

the chain decomposition c(o) of a. We adopt the convention that in c(a)
the chains are written in weakly decreasing order by length and, for those of
the same length, in increasing order of smallest left-element. The ith chain
in this decomposition has 2Xt ordered pairs for t = \, ... , n for some X =

(Xx,... , Xn) h k and has chain-type denoted by k{o) = X.

so
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For example, with k = 5 , er = (1 5 43 2) (12 3 54) has chain decomposition

c(a) = ((1, 5)(î, 2)(3, 2)(3, 5)) ((2, 1)(2, 3)(4, 3)(4, Î)) ((5, 4)(5, 4))

and chain-type k(o) = (2, 2, 1).
Let K^ be the sum in the group algebra of <52k of all permutations with

chain-type X. Certain algebraic properties of the hyperoctahedral group are

needed for discussing K^, and we establish these combinatorially. The hyper-

octahedral group 3§k is isomorphic to the wreath product <Ô2/ <Sk and can be

embedded in <S2k as the centraliser subgroup {a £ <Ô2k: aô = Sa}, where S

has disjoint cycle decomposition (ll)---(kk). Thus 3§k is the automorphism

group of ¿4 and \3Sk\ = 2kk\ For ôx,ô2 £ 38k and a £ <Ô2k, the chain
decomposition of ôxaô2 can be obtained from the chain decomposition of a

by applying ôx to the right-links of a and ô2x to the left-links of a. Thus

k(ôxoô2) — k(o) , so the K¿ are precisely the double cosets of 3§k in <S2k . The

C-span of {K^: X \- k} generates a commutative subalgebra of CÖ2^ called the

Hecke algebra of the Gel'fand pair (<Ô2k ,3Sk). For further discussion, see [2].

A matching on a set of even cardinality is a (set) partition of the set into

disjoint unordered pairs. For example, stfk is a matching. The number of

matchings on a 2m-set is (2m - 1) !!.

We now give the combinatorial theorem of Hanlon, Stanley, and Stembridge
[2] arising from their expected value in the real case. Their theorem has been

rewritten using the fact that the connection coefficients d* v are given by

K/iKj/ = Ylixdp,vKx and that the K„ commute. Combinatorially, the connection

coefficient í/¿ „ is the number of ways (ex ,e2) in which an arbitrary element

with chain-type X can be written as exe2, where ex has chain-type p and e"2
has chain-type v . The proof is bijective, involving a construction on words in

9?.

Theorem 3.1.

(^KpAb)) fewfl)   =l^lEK¿ E vM II (mj(w)-m.
\i/Hfc /    \pthk J Xt-k       w€%T" i,j>\

Proof. We begin with a combinatorial interpretation of the left-hand side. For
p £ <62k , a chain a-labeling a of p is a mapping from the chains in the chain

decomposition of p to the elements of a. In such a mapping, we say that a

chain is a-labeled (or labeled where the context permits) by the element of a

to which it is mapped. Let wt(a) = n,>i a{' where f is half the total number

of ordered pairs on chains labeled a¡ in a. Then clearly £)a wt(a) = pK(P)(a),

where the sum is over all chain a-labelings a of p, and thus

Y, E^wt(a) = EK^(^-
p€®2k   a p!<-k

This means that the left-hand side of the result is the generating function

(7) £    5>/>wt(j8)wt(a),

where ß is summed over all chain Mabelings of a .
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For the right-hand side, let Jf(w) be the set of all infinite-dimensional ma-

trices indexed by the positive integers, whose (i, »-entry is some matching on

{1, ... ,nij(w)), for i,j>\. Thus \J?(w)\ = TJ,j>x(n¡j(w) - 1)!!, so the

right-hand side of the result is the generating function

(8) \3Sk\ £    E   7W(wM(w)\.
ye@2k wear;;,

We now give a combinatorial proof of the result by comparing (7) and (8) and
considering each pair a, p £ <S2k . All we need, for each chain è-labeling ß of

a and chain a-labeling a of p, is to construct d £ 38k , y £ <Ô2k , w £ WK'L

and M £ Jf(w) such that op - y and wt(/?)wt(a) = y/(w) and in such a

way that this construction is reversible. The four quantities are constructed as

follows.
(i) For y : Compute the product op to obtain y .

(ii) For w : Let the chains of y, in the order specified by the above conven-

tion, have lengths 2XX, ... , 2X„ . For each j = 1, ... , n , construct a word Vj

of length 4Xj by concatenating Xj strings of length four, where the /th such

string is

gadg'bh,

in which g = (s, p(s), t), g' = (5', p(s'), t') where (s, t) and (s', t') are the

(21 - l)st and 2/th ordered pairs on the jth chain of y, ad is the label of the
chain in a containing s (and s') as a left-element, and b¡¡ is the label of the

chain in ß containing t' as a right-element.

For example, with k = 8 and o = (Î2 3243)(l)(4), p = (1Î42 34)(2 3),
let

ß = ((1, l)(î, 2)(3, 2)(3, î))ft2((2, 3)(2, 4)(4, 4)(4, 3))Ä,,

a = ((1, î)(î, 4)(3, 4)(3, 2)(4, 2)(4, l))a,((2, 3)(2, 3))a2

where the subscript on a chain is its label. Thus wt(yS) = b\b\ and wt(a) =

a\a2. Then y = (1 2Î3 4)(3 4)(2), so

c(y) = ((1, 2)(î, 3)(4, 3)(4, 1)(2, î)(2, 2)) ((3, 4)(3, 4))

and we construct

vx = (l, Î, 2)a,(i\ 4, 3)6,(4, 2, 3)fl,(4, 1, 1)Z>2(2, 3, î>2(2, 3, 2)b2,

v2 = (3,2,4)ax(3,4,4)bx.

We obtain w = (wx, ... , w„) £ Wx by retaining in v = (vx, ... , v„) only

the a's and b 's, in place. (Thus we immediately have wt(/?) wt(a) = <p(w).)

We now show that w is in Wx" . For i, j > 1, let £¡j - {(sx, rx, tx), ... ,
(sq ,rq,tq)}, where sx -< ■ ■ ■ -< sq , be the set of ordered triples (s, r, t) occur-
ring between a¡ and bj in the (vx, ... ,vn), either as a subword a,(s, r, t)bj

or />/(s, r, t)a¡ (circularly).
Consider an arbitrary triple (sx, rx, tx) in 8ij. From the construction of

the v 's, sx is a left-element on a chain labeled a, in a, so rx = ^(s» must
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be a right-element on that chain. Similarly, tx is a right-element on a chain

labeled b¡ in ß, so rx = o~x(tx) is a left-element on that chain. Thus rx

appears as a right-element on a chain labeled a¡ in a and as a left-element on

a chain labeled bj in /? and sx = p~l(rx), tx - o(rx) can be obtained from

rx by means of p and o. This characterises the triples in S¡j.
Now for such an rx , the pair {rx , ô(rx)} is a right-link on a chain labeled

a, in a and is a left-link on a chain labeled bj in /?. This in turn means that

S(rx) is a right-element on a chain labeled a¡ in a and a left-element on a

chain labeled bj in /?, so by the above characterisation, 3(rx) = ry for some

(sy, ry, ty) in 8/j, where y ^ x. Thus the number of triples, q, in ^>;-
must be even. Moreover, by construction q = m¡j(w) + m\ j(w) - n¡j(w),

so w £ Wx", with X = jc(y).
(iii) For M: The (/', »-entry of M is the matching on {1, ... , n¡j(w)}

consisting of all pairs {x, y} such that ry = S(rx) in the above analysis.

(iv) For d: Consider the matching &~ on {1,1, ... , k,k} consisting of

all pairs {sx, sy} such that ry = S(rx) in the above analysis for all i,j >

1. Suppose that y = {{gx ,hx), ... , {gk, hk}} where gx ■< ■ • • -< gk and

g, •< h¡, i = 1,..., k. Then d is obtained as d(i) = p(g¡), d(i) = p(h¡),
i = I, ... , k . Clearly, d £ 3êk since p(g¡) — S(p(h¡)), i = 1, ... , k, by
construction.

To complete the above example, we obtain

wx = axbxaxb2a2b2 ,

w2 = axbx,

[%j]

M

{(1, 4, 3), (3, 2, 4), (3, 4, 4), (4, 2, 3)}    {(1, 1, 2), (4, 1, 1)}    0
0 {(2,3,î), (2, 3,2)}    0

{{1,3},{2,4}}    {{1,2}}    0
0 {{1,2}}    0

y = {{l,4},{l,3},{2,2},{3,4}},

and finally

■012   2   3    3   4   4
14   4   3    3   2   2

To reverse the construction, we start with y,w,M,d and proceed to de-

termine v . The second and fourth position (mod 4) of v come immediately
from w . The first and third entries in the triples occupying the first and third
positions (mod 4) of v come immediately from the chain decomposition of
y . These give the first and third entries of the triples in W¡j for each i, j > 1,

depending between which a¡ and bj they lie. This portion of the W¡j together

with M give the matching &~. Finally d and & together allow us to deter-

mine the second entries of the triples in §/__,- and thence recover v . Clearly,

v uniquely determines p, o, a, ß .   G
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